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Abstract

Both sepsis and acute respiratory distress syndrome (ARDS) rely on imprecise clinical definitions leading to heterogeneity, which has
contributed to negative trials. Because circulating protein/DNA complexes have been implicated in sepsis and ARDS, we aimed to de-
velop a proteomic signature of DNA-bound proteins to discriminate between children with sepsis with and without ARDS. We per-
formed a prospective case-control study in 12 children with sepsis with ARDS matched to 12 children with sepsis without ARDS on
age, severity of illness score, and source of infection. We performed co-immunoprecipitation and downstream proteomics in plasma
collected ! 24 h of intensive care unit admission. Expression profiles were generated, and a random forest classifier was used on dif-
ferentially expressed proteins to develop a signature which discriminated ARDS. The classifier was tested in six independent blinded
samples. Neutrophil and nucleosome proteins were over-represented in ARDS, including two S100A proteins, superoxide dismutase
(SOD), and three histones. Random forest produced a 10-protein signature that accurately discriminated between children with sepsis
with and without ARDS. This classifier perfectly assigned six independent blinded samples as having ARDS or not. We validated
higher expression of the most informative discriminating protein, galectin-3-binding protein, in children with ARDS. Our methodology
has applicability to isolation of DNA-bound proteins from plasma. Our results support the premise of a molecular definition of ARDS,
and give preliminary insight into why some children with sepsis, but not others, develop ARDS.
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INTRODUCTION

How diverse inciting insults can result in acute respiratory
distress syndrome (ARDS) (1) remains unknown. Sepsis,
defined as organ dysfunction caused by a pathologic host
response to an infection (2), is the most common etiology of
ARDS in both adults (3) and children (4). However, both sep-
sis and ARDS are clinical definitions, which lead to misclas-
sification, imprecision, and heterogeneity, all of which have
contributed to negative trials. More precise definitions for
ARDS may reduce heterogeneity, assist with trial selection,
and allow insight into mechanisms elucidating why some
patients with sepsis develop ARDS, while others do not.

Plasma biomarkers have been proposed to more precisely
define ARDS (5, 6). Studies in adults have implicated nucleo-
somes, the histone/DNA complexes resulting from nuclear
chromatin degradation released after cellular damage, as path-
ogenic in sepsis (7–9), aspiration (10), and trauma-related
ARDS (11). Recently, we demonstrated nucleosomes were

elevated in pediatric ARDS compared with controls without
ARDS (12, 13). Based on these results, and given that other non-
histone protein/DNA complexes have been implicated in can-
cer (14), we reasoned that a systematic analysis of plasma
DNA-bound proteins in children with sepsis could potentially
differentiate those with and without ARDS. We additionally
posited that identification of DNA-bound proteins in ARDS
may provide insight into the pathogenesis of lung injury in sep-
sis, with a specific hypothesis that neutrophil-derived proteins
fromprogrammed neutrophil deathwould be implicated.

METHODS

Study Design and Patient Selection

We aimed to compare DNA-bound proteins from subjects
with and without ARDS after co-immunoprecipitation (co-
IP) with anti-ds DNA antibody as bait, with the resulting
elution subject to liquid chromatography tandem mass
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spectrometry (LC-MS/MS). We performed a case-control study
nested within a cohort study of ARDS at the Children’s
Hospital of Philadelphia (CHOP), approved by the Institutional
Review Board (CHOP IRB 13-010578), with written or verbal
informed consent obtained before enrollment (13, 15).
Consecutive patients were screened for (Berlin) ARDS (1)
between July 2014 and June 2019: 1) acute (!7 days of risk fac-
tor) respiratory failure requiring invasive ventilation, 2) arterial
access, 3) 1 mo < age < 18 yr, 4) two consecutive PaO2/FIO2 !
300 separated by "1 h on positive end-expiratory pressure " 5
cmH2O, and 5) bilateral infiltrates. Exclusion criteria were as
follows: 1) respiratory failure from cardiac failure, 2) exacerba-
tion of chronic lung disease, 3) ventilator dependence, 4) cya-
notic heart disease, 5) ventilation for >7 days before PaO2/FIO2

! 300, or 6) ARDS established outside of CHOP.
For comparison, we enrolled 25 intubated children with

ARDS risk factors screened for the ARDS cohort, but not
meeting oxygenation (PaO2/FIO2 > 300) and radiographic cri-
teria. From this group, we identified 12 subjects meeting
Sepsis-3 criteria (2) and matched these 12 children with sep-
sis without ARDS to 12 subjects with ARDS based on age cate-
gories (!2 yr, 2–6 yr, 6–12 yr, 12–15 yr, 15 to <18 yr), Pediatric
Risk of Mortality (PRISM) III score (±2), and pulmonary ver-
sus nonpulmonary source of sepsis. We ensured that the 12
subjects with ARDS met Sepsis-3 criteria by confirming
organ dysfunction and lactate levels.

Blood Collection and Co-Immunoprecipitation

For the parent ARDS cohort study, we collected blood !24 h
of ARDS onset. For this study, to harmonize with subjects with
non-ARDS sepsis, we ensured that blood for all subjects (with
and without ARDS) was collected !24 h of pediatric intensive
care unit (PICU) admission in citrated tubes (Becton, Dickinson;
Franklin Lakes, NJ), centrifuged within 30 min (2,000 g, 20
min, 20#C) to generate platelet-poor plasma, and stored at
$80#Cuntil analysis. For co-IP, 100 mL of plasmawas precleared
with Protein A/G Plus Agarose (Pierce, Thermo Fisher Scientific,
Waltham, MA) and underwent co-IP (Pierce) using anti-ds DNA
IgG2A (Abcam, Cambridge, MA). Anti-ds DNA antibody was co-
valently bound to an amine-reactive resin, making the elution
enriched for target DNA-associated proteins, withminimal con-
tamination by antibody. This protocol generated %1 mg of pro-
tein per sample, quantified usingNanodrop.

In-Solution Digestion

Samples were precipitated using acetone/trichloroacetic
acid (TCA) (8 vol/1 vol). The pellet was solubilized and digested
with the iST kit (PreOmics GmbH, Martinsried, Germany),
reduced, and alkylated by addition of sodium deoxycholate
(SDC) buffer containing tris(2-carboxyethyl)phosphine (TCEP)
and 2-chloroacetamide, heated to 95#C for 10 min. Proteins
were hydrolyzed for 1.5 h at 37#C by adding LysC and trypsin.
Resulting peptides were desalted, dried by vacuum centrifuga-
tion, and reconstituted in 0.1% trifluoroacetic acid (TFA) con-
taining iRT peptides (Biognosys, Schlieren, Switzerland).

Mass Spectrometry Data Acquisition, Spectral Library
Generation, and Protein Quantification

Samples were analyzed on a QExactive HFmass spectrom-
eter (Thermo Fisher Scientific) coupled with an Ultimate

3000 nano UPLC system and EasySpray source, using data-
independent acquisition (DIA) and data-dependent acquisi-
tion (DDA). Tryptic digests were spiked with iRT standards
(Biognosys) and separated by reverse-phase high-purifica-
tion liquid chromatography (RP-HPLC) on a nanocapillary
column, 75 μm id& 50 cm 2 μmPepMap RSLC C18 column at
50#C. Mobile phase A consisted of 0.1% formic acid and mo-
bile phase B of 0.1% formic acid/acetonitrile. Peptides were
eluted into the mass spectrometer at 210 nL/min with each
RP-HPLC run comprising a 125-min gradient from 1% to 5%
B in 15 min, 5%–45% B in 110 min for DDA, and 140 min for
DIA. For DDA, the mass spectrometer was set to repetitively
scan m/z from 300 to 1,400 (R = 240,000) followed by data-
dependent tandemmass spectrometry (MS/MS) scans on the
20 most abundant ions, minimum automatic gain control
(AGC) 1s²e4, dynamic exclusion with a repeat count of 1,
repeat duration of 30 s (R = 15,000). Fourier transform mass
spectrometry (FTMS) full scan AGC target value was 3s²e6,
while MSn AGC was 1s²e5, respectively. MSn injection time
was 160 ms; microscans were set at 1. Rejection of unas-
signed and 1þ ,6–8 charge states was set. The raw files for
DIA were collected at one full MS scan at 120,000 resolution,
a scan range of 300–1,650 m/z, an AGC target of 3s²e6, and a
maximum inject time of 60 ms. This was followed by 22
(DIA) isolation windows with varying sizes at 30,000 resolu-
tion, an AGC target of 3s²e6, injection times set to auto, loop
count, and msx count of 1. Default charge state was 4, first
mass fixed at 200 m/z, and normalized collision energy
(NCE) per window stepped at 25.5, 27, and 30.

MS/MS raw files for the DDA were searched against a refer-
ence human protein sequence database including reviewed iso-
forms from the Uniprot database using MaxQuant v.1.6.1.0 (16).
Trypsin was specified as enzymewith two possiblemissed clea-
vages. Carbamidomethyl of cysteine was specified as fixed
modification and protein N-terminal acetylation and oxidation
ofmethionine were considered variablemodifications. TheMS/
MS tolerance FTMS was set to 20 ppm. A false discovery rate of
1% was set for peptide and protein identification. Remaining
parameters were set to default. MaxQuant output was used to
generate the project-specific spectral library for DIA. This
library was supplemented with additional library generated
using direct DIA approach in Spectronaut 13 (Biognosys) (17).

Data Analysis

Perseus (v.1.6.6.0) and Spectronaut 13 (Biognosys) were
used for proteomic processing and analysis (18). Data were
log2 transformed and normalized by subtracting the me-
dian. We filtered to have eight values in at least one (with
or without ARDS) grouping. Subsequently, data were proc-
essed in R v.3.6.2. Data were imputed using bpca imple-
mented in pcaMethods package v.1.78.0 (Bioconductor,
3.10) (19) and batch effects were removed using the
ComBAT method in R sva v.3.32.1 (20). To compare data
between the groups, Student’s t test was used to identify
differentially expressed proteins, and volcano plots were
generated using EnhanceVolcano v.1.2 (Bioconductor,
release 3.10) to visualize the affected proteins while com-
paring different groups. Lists of differentially abundant
proteins were then sorted based on the P value < 0.05 and
jlog2FCj > 1, yielding a prioritized list, from which we
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selected the top 50 for Gene Ontology (GO) Biological
Functional enrichment and the top 20 for predictive anal-
yses. A single ARDS sample was excluded as an extreme
outlier at this stage. By examining Pearson correlations for
the top 20 proteins, we removed one of each pair of corre-
lated proteins with R > 0.90 (based on their normalized
intensities), reducing the significant set of proteins to 17.

Next, using these 17 proteins, we wished to test them to-
gether to see how well they could predict the clinical state
(sample class) of ARDS versus non-ARDS. We used a random
forests-based classification algorithm from the R package
“random forests” v.4.6-14. Random forests are a machine
learning algorithm that uses an ensemble of randomized de-
cision trees based on a subset of chosen input features (here,
proteins) and predicts sample class (ARDS or non-ARDS)
from the majority vote (21). Another advantage of random
forests is that the features (proteins) that are most important
in making a classification decision can be identified. Here,
we were interested in which sets of these 17 proteins were
most useful in predicting whether a sample should be clas-
sified as ARDS or not. Using the selected features, the ran-
dom forests-based model was run to identify those
proteins that correctly predicted the sample class (ARDS
or non-ARDS). Our benchmark was to try different random
combination of these top proteins until the prediction (out
of bag) error was less than 0.1. We tested accuracy of the
predictive model using an unbiased approach in an inde-
pendent cohort (n = 6) double-blinded by a clinical coordi-
nator. Finally, we assessed differences of the most
informative protein, galectin-3-binding protein (Gal-3BP),
between children with sepsis with and without ARDS
using enzyme-linked immunosorbent assay (ELISA) (R & D
Systems, Minneapolis, MN).

RESULTS

Description of the Cases and Control Subjects

Twelve children with sepsis and ARDS were matched to
12 children with sepsis without ARDS on age, PRISM III
severity of illness score, and pulmonary versus nonpul-
monary source of sepsis (Table 1). Subjects with and with-
out ARDS were well-matched on severity of illness and
sepsis etiology. There was no significant difference in
mortality between children with sepsis with and without
ARDS. Of the five ARDS nonsurvivors, two died of refrac-
tory hypoxemia and three of multisystem organ failure;
the sole septic non-ARDS nonsurvivor died of multisys-
tem organ failure.

Co-Immunoprecipitation and Differential Protein
Expression

We compared DNA-bound proteins from subjects with
and without ARDS after co-IP and LC-MS/MS. Differentially
expressed DNA-bound proteins (Fig. 1) segregated using
unsupervised hierarchical clustering. Differentially abun-
dant proteins were sorted based on P value < 0.05 and
jlog2FCj > 1, yielding a prioritized list, from which we
selected the top 50 for enrichment analysis. Neutrophil and
nucleosome proteins were over-represented in ARDS sam-
ples, including two S100A proteins, superoxide dismutase
(SOD), and three histones. Gene Ontology (GO) enrichment
analysis (Supplemental Fig. S1; all Supplemental Material is
available at https://doi.org/10.6084/m9.figshare.17159387.v1)
demonstrated signals for leukocyte migration, proteasome,
and neutrophil activation. GO Cellular Component analysis
suggested most proteins were extracellular and cytosolic,

Table 1. Demographics of the matched cohort

Variable No ARDS (n = 12) ARDS (n = 12) P Value

Age, yr 10.9 [4.6, 17.3] 11.3 [4.4, 14.7] 0.544
Female, % 4 (33) 7 (58) 0.414
Pediatric Risk of Mortality III 11 [9, 15] 11.5 [9, 15.5] 0.547
Vasopressor score 14 [6, 19] 13 [4, 38] 0.424
Lactate, mmol/L 4.5 [2.7, 5.2] 2.4 [2.2, 3.7] 0.140
Sepsis etiology, % 0.883
Pulmonary 2 (17) 2 (17)
Blood 4 (33) 6 (50)
Abdomen 4 (33) 3 (25)
Genitourinary/renal 1 (8) 0
Skin/soft tissue 0 1 (8)
Central nervous system 1 (8) 0

Immunocompromised, % 5 (42) 6 (50) 1
Oxygenation
PaO2 /FIO2 366 [349, 467] 223 [153, 277] 0.012
Oxygenation index 3.1 [1.6, 3.8] 8.1 [5.3, 12] <0.001

Berlin ARDS severity, %
Mild 6 (50)
Moderate 4 (33)
Severe 2 (17)

Nonpulmonary organ failures, %
Neurologic 0 0 1
Cardiovascular 12 (100) 12 (100) 1
Liver 3 (25) 6 (50) 0.400
Kidney 5 (42) 7 (58) 0.684
Hematologic 5 (42) 6 (50) 1
PICU mortality, % 1 (8) 5 (42) 0.059

ARDS, acute respiratory distress syndrome; PICU, pediatric intensive care unit.
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rather than nuclear (Supplemental Fig. S2), which was less
consistent with nucleosome origins.

ARDS Protein Signature

Next, we sought to develop a minimal protein signature to
predict ARDS. Proteins were sorted according to relative pre-
dictor importance in their ability to discriminate the presence
of ARDS (Supplemental Fig. S3). Filtering based on P value <
0.05 and jlog2-fold changej > 1 reduced the list to 20 potential
predictors. Removal of highly correlated (r > 0.90) proteins
resulted in 17 potential predictors. A single ARDS sample with
a genetic syndrome, moderate ARDS, and nonpulmonary sep-
sis was excluded as an extreme outlier to improve perform-
ance. Using these 17 proteins, we used a random forest
classifier to test which subset most efficiently discriminated
subjects with and without ARDS. Our final list for the predic-
tive model consisted of 10 proteins (Fig. 2 and Supplemental
Fig. S4). The model demonstrated a conservative (unadjusted
for matching variables) area under the receiver operating
characteristic curve of 0.96 (95% confidence interval, 0.88–1),
a sensitivity of 0.92, and a specificity of 1. This model was
tested against six new samples (3 children with and 3 without
ARDS), which were coded and re-coded for double-blinding
before co-IP, LC-MS/MS, and analysis. The classifier demon-
strated perfect assignment of these six samples (Fig. 2).

Galectin-3-Binding Protein Discriminates ARDS in
Children with Sepsis

Galectin-3-binding protein (Gal-3BP) was themost inform-
ative protein in the random forest analysis for discriminating
the presence or absence of ARDS (Supplemental Fig. S3). We
tested the ability of this protein alone to discriminate ARDS
in children with sepsis (Fig. 3). Gal-3BP was higher in chil-
dren with sepsis with ARDS (P = 0.026), relative to without,
and discriminated the presence of ARDS with an area under
the receiving operator characteristic curve of 0.76 (95% con-
fidence interval, 0.59–0.94).

DISCUSSION

Using a combination of proteomics and informatics, we
developed an ARDS signature for children with sepsis com-
posed of circulating DNA-bound proteins, with good per-
formance in a small independent test cohort. A simple
ELISA of Gal-3BP, the most informative protein in the ran-
dom forest classifier, demonstrated modest ability to
discriminate ARDS. As neutrophil-derived proteins were
enriched in ARDS, further investigation of these differen-
tially expressed proteins may provide insight into the role of
neutrophil death in the pathogenesis of ARDS.
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Figure 1. Unsupervised hierarchical clustering of the top 50 differentially expressed DNA-bound proteins between children with sepsis with (blue along
top axis) and without (pink along top axis) acute respiratory distress syndrome (ARDS). Red (upregulated) and green (downregulated) shadings represent
increasing and decreasing fold change.
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The over-representation of neutrophil proteins and histo-
nes in the 17 predictor proteins support neutrophil extracel-
lular traps (NETs) as a potential source for elevated DNA-
bound proteins in ARDS, suggesting a role for NET degrada-
tion in the pathogenesis of ARDS in sepsis. Histones have
been implicated as causal for both sepsis (7–9, 22) and ARDS
(10, 11, 23). In mouse models, circulating histones were more
toxic to lungs than other organs (11). Our results also support
our earlier work showing elevated nucleosomes in children
with ARDS relative to intubated children without ARDS (13).

The two S100 proteins enriched in ARDS, S100A8 and
S100A12, have also been implicated in lung disease (24).
S100A8 (25) and S100A12 (26) both promote neutrophil and
monocyte chemotaxis, consistent with the heightened
innate immune response to the lungs characterizing early
ARDS. Both S100A proteins, like histones, function as dam-
age-associated molecular patterns (DAMPs), as they are

themselves released from neutrophils and monocytes in
response to infection. S100A12 can be induced by interleu-
kin-6 (27), which is also elevated in ARDS (6, 28). Overall, the
protein signature enriched in ARDS strongly implicates neu-
trophil turnover as a key pathogenic mechanism contribut-
ing to ARDS pathogenesis, potentially via generation of
DAMPs causing additional inflammation and tissue damage.

However, it is unclear whether the proteins comprising
the signature are released from cells already bound to DNA,
or whether they are freely circulating and encounter cell-free
DNA during sepsis (29). Cellular component analysis sug-
gested that most proteins higher in ARDS were extracellular
or cytosolic, not nuclear, which does not support a predomi-
nantly nucleosomal or nuclear signature. Multiple types of
regulated cell death have been implicated in ARDS other
than NETosis, including necroptosis (30), pyroptosis (31, 32),
ferroptosis (33), and classic apoptosis (34, 35). Unregulated
cell death from necrosis has also been implicated in ARDS
(36), and is highly inflammatory. Thus, given the multiple
types of cell death from diverse cells in both sepsis and
ARDS, firm conclusions cannot be made regarding the ori-
gins of the DNA-bound proteins enriched in the patients
with ARDS. However, the ability of the protein signature to
discriminate ARDS has utility even without precise delinea-
tion of the source of the proteins.

Gal-3BP was the most informative protein for discriminat-
ing ARDS in the random forest. Gal-3BP is a secreted glyco-
protein of the scavenger receptor cysteine-rich domain
family that binds to galectins 1, 3, and 7, originally described
in the secretome of several cancer cells (37). High Gal-3BP
levels have been found in a myriad of viral and bacterial
infections (38, 39). Mice deficient in Gal-3BP are more sus-
ceptible to LPS, with higher levels of proinflammatory cyto-
kines (40, 41). Overall, Gal-3BP appears to be induced by
microbial infections and has a role in regulating innate im-
munity. A recent study found that circulating Gal-3BP levels
were correlated with greater Covid-19 severity (42), consist-
ent with our results of Gal-3BP as a novel marker for discrim-
inating children with sepsis with ARDS from those without
ARDS. Interestingly, the polymeric immunoglobulin recep-
tor (PIGR), a transmembrane protein implicated in epithelial
cell immune complex transcytosis, was also elevated in

Figure 2. Proximity plot of first two dimensions of random forest classifier-
derived top 10 protein predictor, and distribution of acute respiratory dis-
tress syndrome (ARDS; pink) and non-ARDS (blue) subjects from deriva-
tion set. A single ARDS subject is misclassified. The independent samples
(n = 6, labeled X) are also shown.
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Figure 3. Differences in galectin-3-binding protein
(Gal-3BP) between children with sepsis with and with-
out acute respiratory distress syndrome (ARDS). Gal-
3BP modestly discriminates the presence of ARDS,
with an area under the receiver operating characteris-
tic (AUROC) curve of 0.76 (95% CI, 0.59–0.94). CI,
confidence interval.
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subjects with ARDS. PIGR has also been associated with
Covid-19 severity, with higher levels seen in actively viremic
patients, correlated with S100A8 levels (43). Detection of ele-
vated Gal-3BP in our study, and of PIGR in other studies,
also raises the possibility that proteins we identified as ele-
vated in ARDS do not necessarily need to undergo a co-IP
step for detection.

To our knowledge, this is the first use of anti-ds DNA co-IP
for enrichment of DNA-bound proteins, which may have
utility for characterization of protein/DNA complexes in
other inflammatory conditions. Clinically, sepsis and ARDS
demonstrate overlap in presentation and biomarker profiles
(44–46). However, a protein signature for ARDS may assist
withmore precise diagnosis and allow insight into the patho-
genesis of ARDS. Given differences in co-morbidities, epide-
miology, and outcomes between pediatric ARDS and adults
(4), it is unknown how well this signature would perform in
adults with sepsis, and validation in additional pediatric and
adult septic population with and without ARDS is necessary.

The heterogeneity and imprecision of the definition of
ARDS has contributed to the paucity of therapies. Although
preliminary, our data suggest the potential for amore precise
molecular definition for ARDS. Understanding the proteo-
mic signature of ARDS would permit greater understanding
of the underlying pathophysiology and potentially permit
treatments targeted at shared underlying pathways. It is no-
table that we found a distinct protein signature despite half
of subjects having mild ARDS according to Berlin criteria.
Hypoxemia only weakly correlated with mortality risk in
both adult (1) and pediatric (4) ARDS, particularly at onset,
and it is possible that our proteomic signature was capturing
underlying physiology more precisely than a single blood-
gas measurement. Larger sample sizes will be necessary to
assess the generalizability and utility of these proteins for
identifying ARDS and for assessing whether they correlate
with severity categories.

Our study has limitations. Both derivation and test cohorts
were small and from a single center, raising generalizability
concerns. However, demographics, severity of illness, and
outcomes were similar to other cohorts (4, 47, 48). The co-IP
and proteomic processing are cumbersome and impractical
for a realistic enrichment strategy; however, identification of
a subset of proteins, such as Gal-3BP, raises the potential for
development of a multiplex of the most discriminative pro-
teins with rapid turnaround. Additional work is necessary to
determine whether the DNA-bound nature of these proteins
is a necessary component of this signature, or whether a sim-
ple multiplex can discriminate ARDS without an anti-ds DNA
co-IP. Both subjects with and without ARDS met criteria for
sepsis, meaning that our signature may not extrapolate to
noninfectious ARDS. Given that >70% of pediatric ARDS is
caused by either pneumonia or nonpulmonary sepsis (4, 49),
our signature should prove useful for most cases of ARDS.
Overall, our results provide the beginnings of a molecular def-
inition of ARDS, and give preliminary insight into why some
children with sepsis, but not others, develop ARDS.
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