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The current understanding of the genetic determinants of thoracic 
aortic aneurysms and dissections (TAAD) has largely been informed 
through studies of rare, Mendelian forms of disease. Here, we conducted a 
genome-wide association study (GWAS) of TAAD, testing ~25 million DNA 
sequence variants in 8,626 participants with and 453,043 participants 
without TAAD in the Million Veteran Program, with replication in an 
independent sample of 4,459 individuals with and 512,463 without TAAD 
from six cohorts. We identified 21 TAAD risk loci, 17 of which have not been 
previously reported. We leverage multiple downstream analytic methods 
to identify causal TAAD risk genes and cell types and provide human genetic 
evidence that TAAD is a non-atherosclerotic aortic disorder distinct from 
other forms of vascular disease. Our results demonstrate that the genetic 
architecture of TAAD mirrors that of other complex traits and that it is not 
solely inherited through protein-altering variants of large effect size.

TAAD encompass a spectrum of aortic pathology affecting the aortic 
root, the ascending aorta, the aortic arch and the descending thoracic 
aorta. Thoracic aortic aneurysms, a dilation of the proximal aorta, are 
known to progressively enlarge over time, ultimately leading to rupture 
and death if not surgically repaired. In addition, dissections of the ascend-
ing (Stanford type A) or descending (Stanford type B) thoracic aorta are 
life-threatening conditions requiring emergency treatment, often includ-
ing surgical repair, and are associated with high short-term and long-term 

mortality risk1,2. Despite the lethality of these conditions, the genetic 
determinants of TAAD remain largely unknown, with published GWAS 
having revealed only four loci reaching genome-wide significance3–5. As 
a result, most of what is understood about the genetics of TAAD has been 
derived from studies examining rare, pathogenic variants resulting in 
heritable aortopathy (so called, hereditary TAAD or ‘HTAAD’)6.

The Million Veteran Program (MVP) is a genomic and preci-
sion medicine cohort established in 2011 by the Department of VA 
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this threshold in their association with descending thoracic aortic diam-
eter. We then examined the genome-wide significant aortic diameter 
loci from Pirruccello et al.10 within our TAAD summary statistics. Of the 
ascending and descending aortic diameter loci available for testing in 
our dataset, 49 of 81 and 12 of 46 demonstrated evidence of associa-
tion with TAAD after Bonferroni correction (P < 0.0004), respectively 
(Supplementary Table 10).

Phenotypic consequences of TAAD risk variants
Understanding the full spectrum of phenotypic consequences of a 
given DNA sequence variant can help identify the mechanism by which 
a variant or gene leads to disease. Termed PheWAS, this approach exam-
ines the association of a risk variant across a range of phenotypes11,12. 
Using data from the Integrative Epidemiology Unit (IEU) OpenGWAS 
project13,14, we performed a PheWAS of the 21 TAAD lead risk variants 
across a range of over 2,000 conditions, diseases and metabolites. In 
total, we identified 167 statistically significant (P < 5.0 × 10−8) PheWAS 
associations across the 21 genetic variants. In particular, several of the 
TAAD risk variants were associated with a range of anthropometric 
traits such as height and conditions including asthma and migraine with 
genome-wide significance (Supplementary Table 11). Notably, for seven 
of the 21 variants, the TAAD risk allele was associated with increased 
diastolic blood pressure (DBP), and three variants demonstrated an 
association with increased height. By contrast, for all nine variants 
that demonstrated an association with systolic blood pressure (SBP), 
the TAAD risk allele was associated with decreased SBP.

Because increased blood pressure and increased height have 
been reported to be risk factors for TAAD15, we performed a sensitivity 
analysis retesting the association of the seven DBP-associated variants 
and three height-associated variants with TAAD, accounting for DBP 
and height in the association model, respectively (Supplementary 
Methods). For DBP, while a minor decrease in the TAAD-association 
P value was observed, in each case, the P value remained significant 
at the genome-wide level, suggesting that blood pressure was not the 
primary mediator for the observed genetic association (Supplementary 
Table 12). For height, all three variants demonstrated an attenuation 
in association point estimate and P value, although this signal did 
not completely disappear, suggesting that some, but not all, of the 
association may be mediated through an increase in standing height 
(Supplementary Table 13).

Causal epidemiologic risk factors for TAAD
In observational studies, smoking, hyperlipidemia, hypertension and 
standing height have been suggested as independent risk factors for 
TAAD15,16. We performed Mendelian randomization (MR) analyses using 
genetic instruments for a lifetime smoking index17, lipids (triglycerides, 
high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cho-
lesterol)18, blood pressure (SBP, DBP, pulse pressure (PP) and mean arte-
rial pressure (MAP) (https://pan.ukbb.broadinstitute.org)) and height19 
(Supplementary Table 14). Consistent with the epidemiologic literature, 
we observed that a 1-s.d. genetic increase in lifetime smoking index, 
DBP, MAP and height was associated with increased risk of TAAD (OR, 
1.42 for smoking ~20 cigarettes a day for 15 years and stopping 17 years 
ago; 95% CI, 1.14–1.77; P = 0.002; OR, 1.32 per 10-mmHg increase in DBP; 
95% CI, 1.22–1.43; P = 3.0 × 10−12; OR, 1.17 per 10-mmHg increase in MAP; 
95% CI, 1.10–1.25; P = 6.9 × 10−7; OR, 1.23 per 7.6-cm increase in height; 
95% CI, 1.15–1.33; P = 3.0 × 10−8, two-sided Bonferroni P < 0.0055 (Fig. 3 
and Supplementary Fig. 4–6)). Conversely, a 1-s.d. genetic increase in 
PP was associated with a decreased risk of TAAD (OR, 0.65 per 10-mmHg 
increase in PP; 95% CI, 0.60–0.71; P = 1.9 × 10−20). Our results remained 
robust to multiple sensitivity analyses, including the weighted median20 
as well as MR-PRESSO21 and MR-Egger22 tests for evidence of horizontal 
pleiotropy, although MR-PRESSO outlier-corrected results demon-
strated effect estimates slightly smaller in magnitude (Supplementary 
Table 15a). We did not detect a significant association between a genetic 

Healthcare System to study how genes affect health and disease. We 
recently demonstrated that a VA Healthcare System-based biobank can 
aid in the genetic discovery of aortic disease7 and allows for the elucida-
tion of causal biology and mechanisms. Leveraging the MVP resource, 
we sought to (1) perform a genetic discovery analysis for TAAD across 
multiple ancestries, (2) explore the spectrum of phenotypes associ-
ated with TAAD risk variants through a phenome-wide association 
study (PheWAS), (3) examine the genetic relationship between TAAD 
and its epidemiologic risk factors, (4) map causal variants and genes 
for disease, (5) identify causal tissues and cell types and (6) construct 
and test a polygenic risk score (PRS) for TAAD (Fig. 1).

Results
Common variants associated with TAAD
We designed a two-phased GWAS. The initial MVP discovery analysis 
was composed of 8,626 individuals (7,050 European, 1,266 African and 
310 Hispanic ancestry participants) with TAAD and 453,043 disease-free 
individuals from the same ancestral groups (Supplementary Fig. 1); 
their baseline characteristics are presented in Supplementary Table 1. 
Participants with TAAD were more likely to be older, male, prescribed 
statin therapy and former smokers.

Through genotype imputation, we obtained 25.4 million, 40.3 
million and 34.9 million DNA sequence variants for analysis in partici-
pants of European, African and Hispanic ancestry, respectively (Sup-
plementary Table 1). Following multi-ancestry meta-analysis in the 
discovery phase, a total of 1,465 variants at 25 loci met a genome-wide 
significance threshold (P < 5 × 10−8; Supplementary Figs. 2 and 3). We 
replicated the known FBN1 (ref. 3), ULK4 (ref. 4) and LRP1 (ref. 4) loci at 
genome-wide significance and the recently identified TCF7L2 (ref. 5) 
locus with P < 5 × 10−5 (Supplementary Table 2). Notably, in the MVP, we 
found no evidence of association for three variants previously reported 
in an analysis of 435 thoracic aortic aneurysm cases that lacked inde-
pendent replication8, suggesting that these rare variant associations 
may be false positive findings (Supplementary Table 3).

Of the 1,465 variants reaching genome-wide significance in the 
MVP, 1,461 were also available for independent testing in external 
datasets (4,459 individuals with TAAD, 512,463 individuals without 
TAAD across six cohorts of predominantly European ancestry) and were 
taken forward for replication. Following replication, 21 loci continued 
to exceed genome-wide significance (P < 5 × 10−8), with the four known 
and 17 new loci demonstrating a directionally consistent replication 
P value < 0.05 (Tables 1 and 2 and Supplementary Tables 4 and 5). The 
FBN1 variant rs1818275 was the most significant association (17.4% 
frequency for the C allele; odds ratio (OR) = 1.35; 95% confidence inter-
val (CI), 1.41–1.30; P = 2.5 × 10−47). All five signals that did not replicate 
failed to meet the pre-specified threshold (P < 0.05) for independent 
replication (Supplementary Table 6).

Of the 21 TAAD risk loci, 16 were directionally consistent across 
European, African and Hispanic ancestries in the MVP; 13 demonstrated 
at least nominal significance (two-sided P < 0.05) in individuals of Afri-
can ancestry, and six did likewise in participants of Hispanic ancestry 
(Supplementary Table 7). A conditional analysis with GCTA-COJO9 
and an ancestry-matched linkage disequilibrium (LD) reference panel 
identified a total of five additional independent variants across the 21 
replicated TAAD GWAS loci (Supplementary Table 8).

Anatomic distribution of TAAD risk variants
We next explored whether the identified TAAD risk variants were 
associated with a specific anatomic distribution of aortic disease. We 
examined the 21 TAAD risk variants for association with ascending or 
descending thoracic aortic diameters in recently published UK Biobank 
summary statistics from Pirruccello et al. (n = 39,688 individuals)10. 
We found that all 21 lead variants demonstrated an association with 
ascending aortic diameter with Bonferroni P < 0.0012 (Fig. 2a,b and 
Supplementary Table 9). By contrast, only 13 of the 21 variants surpassed 
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10-mmHg increase in SBP and TAAD risk or an association between any 
lipid fraction and TAAD.

Given the substantial overlap in risk variants associated with each 
blood pressure trait as well as their strong genetic correlation, we next 
performed an MR Bayesian model-averaging (MR-BMA) analysis, a 
recently developed analytic tool that applies Bayesian principles to 
prioritize causal risk factors among correlated exposures with shared 
genetic predictors (in this case, blood pressure traits)23. MR-BMA gener-
ates a marginal inclusion probability that prioritizes causal risk factors 
for disease rather than determining effect estimates for each of the blood 
pressure traits on TAAD risk. Genetic instruments were constructed 

from independent genetic variants associated with any major blood 
pressure-related trait (SBP, DBP, PP or MAP) at a genome-wide signifi-
cance level (P < 5 × 10-8, R2 < 0.001). PP and DBP emerged as the most 
highly prioritized causal blood pressure traits for TAAD risk (PP marginal 
inclusion probability = 0.82, PNyholt = 2.0 × 10−5; DBP marginal inclusion 
probability = 0.68, PNyholt = 5.4 × 10−3; Supplementary Table 15b).

Identification of candidate causal TAAD risk genes
We next sought to identify causal TAAD risk genes and variants. Prior 
human genetic evidence strongly suggests that FBN1 (ref. 24), ELN25 
and LRP1 (refs. 26,27) are the causal genes at three of the identified loci, 
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Fig. 1 | Overall study design. In the current study, we first performed a TAAD 
discovery GWAS in the MVP, with replication from six external datasets. 
Secondary analyses included a PheWAS of lead TAAD risk variants, MR analyses 
with known epidemiologic risk factors for disease, a series of analyses to 
identify causal genes, variants and cell types for TAAD leveraging colocalization 

techniques and scRNA-seq or snRNA-seq data, and the generation and testing 
of a TAAD PRS. This figure was created with the assistance of BioRender. 
Abbreviations: LDL-C, LDL cholesterol; HDL-C, HDL cholesterol; TG, triglycerides; 
SBP, systolic blood pressure; DBP, diastolic blood pressure.
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and a recent report provided evidence that TCF7L2 is the likely causal 
gene acting at the locus5 (Supplementary Table 16). For the remaining 
loci, we examined the genetic literature and possible causal variants 
that result in a protein-altering consequence in high LD with the lead 
variant (R2 > 0.8). In addition, we hypothesized that TAAD risk variants 
may be acting by inducing expression changes locally in the proximal 
aortic wall and performed a fine-mapping transcriptome-wide associa-
tion study (TWAS)28 and colocalization analyses using aortic expres-
sion quantitative trait locus (eQTL) data from the Genotype–Tissue 
Expression Project (GTEx)29. When combining the above strategies, 
we identified seven additional putative causal genes: THSD4, COL6A3, 
CDH13, NOC3L, SCAI, PRDM6 and ADAMTS8 (Supplementary Tables 16 
and 17). At five of the putative causal genes, we were also able to fine 
map the locus to five or fewer causal variants (Supplementary Table 18).

Notably, we observed that decreased THSD4 expression was asso-
ciated with an increased risk of TAAD. The protein product of THSD4, 
ADAMTSL6, is a known microfibril-associated protein that promotes 
fibrillin-1 matrix assembly30. In a recent report, rare deleterious THSD4 
variants segregated in families with a history of thoracic aortic aneu-
rysms, and Thsd4+/− mice were found to have progressive thoracic aortic 
dilation31. In sum, these results suggest that common THSD4 variants may 
cause TAAD through diminished gene expression in the thoracic aorta.

Gene expression analyses reveal TAAD-relevant cell types
We next sought to identify the critical tissues and cell types for TAAD 
risk variants. At the genome-wide level, we first used stratified LD 

score regression32 to identify TAAD-relevant tissues and cell types. 
We combined publicly available expression data from GTEx29 and 
an aggregation of microarray gene expression datasets comprising 
37,427 samples in human, mouse and rat32 (previously referred to as 
the ‘Franke lab dataset’) to evaluate for significant enrichment of spe-
cific tissues or cell types with genetic TAAD risk-association signals 
across 205 different tissues and cell types. Not surprisingly, the aorta 
demonstrated the strongest enrichment (Penrichment = 6.2 × 10−6; Sup-
plementary Table 19). Interestingly, we also observed an enrichment 
for the uterine myometrium, chondrocytes and osteoblasts (Bonfer-
roni Penrichment < 0.002). Human myometrium is primarily composed 
of smooth muscle cells, consistent with the well-recognized critical 
role of vascular smooth muscle cells (VSMCs) in TAAD pathogenesis. 
Much like fibroblasts, chondrocytes produce and maintain collagen 
and proteoglycans, and, in cell culture, osteoblasts are nearly indis-
tinguishable from fibroblasts33, providing evidence for a key role of 
fibroblasts in TAAD development.

We next examined whether a putative causal TAAD risk gene set 
demonstrated a significant cell type enrichment. We generated a gene 
set of 21 putative causal TAAD risk genes: the 11 candidate causal genes 
identified from our GWAS as well as ten additional previously identified 
definitive or strong HTAAD genes (‘category A’)6. Of note, FBN1 was 
present both in our GWAS gene set and in the HTAAD gene set. We then 
tested whether the 21 putative causal TAAD risk genes were enriched 
in specific cell types identified from publicly available single-nuclear 
RNA-sequencing (snRNA-seq) expression data from ascending and 

Table 1 | Four known TAAD risk loci after discovery in the MVP and independent replication

Chr:pos (hg19) rsID EA NEA EAF Overall OR Overall 95% CI Overall P Gene/locus Annotation

3:41,960,006 rs1716975 T C 0.321 1.14 1.11–1.18 2.96 × 10−15 ULK4 missense_variant

10:114,773,927 rs7904519 A G 0.519 1.09 1.06–1.12 5.71 × 10−9 TCF7L2 intron_variant

12:57,527,283 rs11172113 T C 0.592 1.11 1.08–1.14 6.98 × 10−16 LRP1 intron_variant

15:48,883,939 rs1818275 C T 0.174 1.35 1.30–1.41 2.54 × 10−47 FBN1 intron_variant

Abbreviations: EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; rsID, reference SNP cluster ID.

Table 2 | Seventeen new TAAD risk loci after discovery in the MVP and independent replication

Chr:pos (hg19) rsID EA NEA EAF Overall OR Overall 95% CI Overall P Gene/locus* Annotation

1:9,436,538 rs4596926 A G 0.404 1.10 1.07–1.13 3.94 × 10−11 (SPSB1) regulatory_region_variant

2:164,915,279 rs13002621 G A 0.222 1.12 1.08–1.15 2.68 × 10−12 AC092684.1 intron_variant

2:19,729,131 rs1863777 T C 0.361 1.14 1.11–1.17 1.67 × 10−19 (OSR1) intergenic_variant

2:238,227,919 rs6759927 G A 0.301 1.11 1.08–1.14 3.57 × 10−12 COL6A3 downstream_gene_variant

4:146,814,640 rs7666150 C T 0.504 1.13 1.10–1.16 6.58 × 10−17 ZNF827 intron_variant

5:122,441,482 rs337128 C A 0.513 1.12 1.09–1.15 2.74 × 10−16 PRDM6 intron_variant

5:95,566,562 rs55745974 A T 0.658 1.20 1.16–1.23 1.54 × 10−32 CTD-2337A12.1 intron_variant

7:35,293,972 rs336284 A G 0.485 1.1 1.08–1.14 6.23 × 10−13 TBX20 upstream_gene_variant

7:73,431,693 rs62465578 T G 0.431 1.18 1.15–1.21 2.94 × 10−31 (ELN) regulatory_region_variant

9:127,883,905 rs139650453 A G 0.875 1.15 1.10–1.20 4.98 × 10−10 SCAI intron_variant

10:96,061,793 rs4394764 G A 0.810 1.15 1.11–1.19 4.52 × 10−17 PLCE1 intron_variant

11:130,271,647 rs747249 G A 0.619 1.16 1.13–1.19 5.50 × 10−25 ADAMTS8 downstream_gene_variant

13:22,861,921 rs9316871 A G 0.783 1.21 1.18–1.25 3.03 × 10−32 (AL354828.1) regulatory_region_variant

13:50,810,171 rs2765768 G A 0.307 1.10 1.07–1.13 4.85 × 10−11 DLEU1 intron_variant

15:71,612,514 rs1441358 T G 0.643 1.12 1.09–1.15 4.50 × 10−16 THSD4 intron_variant

16:83,045,790 rs7500448 G A 0.241 1.13 1.09–1.16 2.47 × 10−13 CDH13 intron_variant

17:2,097,583 rs1002135 G T 0.398 1.11 1.09–1.14 5.10 × 10−16 SMG6 intron_variant

*Genes for variants that are outside the transcript boundary of a protein-coding gene are shown with the nearest candidate gene in parentheses (for example, (OSR1)).
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descending thoracic aorta10. Using the Fast Gene Set Enrichment soft-
ware34, we observed that the causal TAAD gene set was significantly 
enriched in VSMCs (P = 0.0078), and a suggestive enrichment was 
also observed with fibroblasts (P = 0.02), although this was no longer 
significant after Bonferroni correction (P < 0.01 = 0.05 ÷ 5 cell types; 
Supplementary Table 20). These findings are consistent with our results 
from the stratified LD score regression analysis highlighting VSMCs 
and fibroblasts as causal TAAD cell types.

Finally, we sought to identify relevant cell types for the individual 
putative causal TAAD risk genes leveraging single-cell RNA-sequencing 
(scRNA-seq) data from normal and aneurysmal ascending aortic aneu-
rysm tissue35 and snRNA-seq data from normal ascending and descend-
ing thoracic aortas10. For the nine genes that we hypothesized promote 
TAAD risk through changes in aortic gene expression (‘candidate causal 
genes through changes in expression’ in Supplementary Table 17), we 
first qualitatively assessed for a prioritized cell type (1) the percent-
age of cells expressing the gene in a given cell type cluster and (2) the 
magnitude of average gene expression in each cell type (Fig. 4a–c). We 
then tested the differential expression of each gene among putative cell 
type clusters between ascending aortic aneurysm and normal aortic 
tissue samples using Seurat36 (Fig. 4d,e). Integrating this evidence, 
we prioritized a series of causal cell types for each gene (Fig. 4f). For 
example, COL6A3 was prioritized to be acting in fibroblasts, consistent 
with a reported involvement in smooth muscle cell–elastin contact 
within the aortic wall37. CDH13 (encoding cadherin 13) was prioritized 
to be acting in fibroblasts, mesenchymal–stromal cells and endothe-
lial cells. Cadherin 13 signaling has been shown to be protective for 
endothelial cells in the setting of oxidative stress38, and its reported role 
in angiogenesis39 suggests that it may play a role in aortic remodeling 
during aneurysmal degeneration across multiple cell types. In total, 
we prioritized at least one candidate causal cell type for eight of the 
nine genes thought to be acting through changes in gene expression 
in the thoracic aorta.

PRS generation for TAAD
Lastly, we sought to examine the contribution of polygenic inheritance 
on TAAD risk. We generated TAAD PRS including 1,189,073 variants from 
the MVP discovery GWAS summary statistics (8,626 multi-ancestry 
TAAD cases, 453,043 controls) and an LD panel from 1000 Genomes40 
whole-genome-sequencing data. To increase the number of independ-
ent variants included in our score, we used the PRS-CSx software, which 
uses Bayesian methods to generate posterior genetic variant effect 
sizes under coupled continuous shrinkage priors41. We first validated 
the PRS using prevalent data from the Mass General Brigham Biobank 
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Fig. 2 | Anatomic distribution of TAAD risk variants in the thoracic aorta.  
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Z scores (y axis) for the 21 TAAD lead risk variants in our study queried in 
previously published summary statistics from the UK Biobank10 (n = 39,688 
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associated 95% CIs (error bars) for the 21 TAAD lead risk variants in our study 
queried in previously published summary statistics from the UK Biobank10 
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Variants were declared to be significantly associated with the respective 
diameter if the linear mixed-model two-sided P value of association was 
<0.0012. Variants significantly associated with the diameter of the ascending 
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Fig. 3 | MR analyses of epidemiologic risk factors for TAAD. Logistic regression 
(inverse-variance-weighted; IVW) association results for multiple epidemiologic 
risk factor exposures with the TAAD outcome in two-sample MR analyses. 
The lifetime smoking TAAD OR reflects a per-genetic increase in smoking ~20 
cigarettes a day for 15 years and stopping 17 years ago. The OR for height reflects 
a 1-s.d. genetic increase in standing height (~7.6 cm). The SBP, DBP, MAP and PP 
ORs correspond to the change in TAAD risk per 10-mmHg increase in the blood 
pressure trait. The lipid ORs reflect the change in TAAD risk per s.d. genetic 
increase in lipid fraction. Two-sided P values are displayed, and we set a two-sided 
P < 0.0055 (0.05 ÷ 9 traits) for statistical significance. Error bars represent 95% CIs 
of the displayed ORs.
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(775 cases, 24,518 controls of European ancestry). We observed that 
the TAAD PRS was strongly associated with prevalent TAAD, with a 
1-s.d. increase in PRS associated with a 57% increased risk of disease 
(ORPRS = 1.57, 95% CI = 1.46–1.69, PPRS = 4.6 × 10−32). Individuals with a 
PRS in the 95th percentile or higher were 2.67 times more likely to be 
diagnosed with TAAD (OR = 2.67, 95% CI = 2.11–3.39, PPRS = 6.3 × 10−16; 
Fig. 5a). After this initial validation step, we then tested this PRS in two 
additional cohorts.

We first assessed the performance of the PRS in individuals of 
European ancestry in the Cardiovascular Health Improvement Pro-
ject–Michigan Genomics Initiative (CHIP–MGI) cohort (3,743 cases 
and 51,898 controls). We again observed an effect estimate greater than 
2.0 for the top 5% PRS (OR = 2.28, 95% CI = 2.03–2.56, PPRS = 1.8 × 10−47;  
Fig. 5a). We next restricted the data to those individuals with targeted or 
exome sequencing available (1,842 cases and 1,887 controls) and com-
pared the increase in area under the curve (AUC) afforded from the PRS 
and a set of rare TAAD risk variants that were manually curated as ‘path-
ogenic or likely pathogenic’ for HTAAD according to American College 
of Medical Genetics and Genomics best practices42. While the effect 
estimate of these pathogenic variants was substantially larger than that 
observed for the top 5% PRS (ORpathogenic = 11.1; P = 1.4 × 10−10), we noted 
that, when modeling TAAD risk, the addition of the PRS improved the 
AUC value by a similar amount as the presence of a pathogenic TAAD 
risk variant (Supplementary Table 21 and Supplementary Fig. 7). In a 
sensitivity analysis, we noted similar results when considering rare, 
deleterious variants as defined by missense variants with a REVEL43 
score >0.5 or a LOFTEE44 high-confidence predicted loss-of-function 
variant within one of the 11 HTAAD genes.

We then sought to examine whether the TAAD PRS was associated 
with an increase in incident TAAD and incident TAAD-related mortal-
ity. Using the UK Biobank, we first tested the PRS with all incident 
TAAD events and then tested the PRS with incident TAAD events listed 
as a primary or secondary cause of death in the electronic health 
record (EHR) using Cox proportional hazard models. We observed 
that those in the top 5% of the PRS were 2.5-fold more likely to experi-
ence an incident TAAD event during a median of 11.2 years of follow 
up and demonstrated more than fourfold higher risk of TAAD-related 
mortality (Fig. 5b).

Discussion
In the current study, we identified 17 new TAAD loci and localized the 
anatomic distribution of these TAAD risk variants. We examined the 
phenotypic consequences of TAAD lead risk variants with PheWAS, 
and, through MR, we demonstrate that elevated PP and DBP, taller 
standing height and smoking are likely causal epidemiologic risk fac-
tors for TAAD. Leveraging bulk and scRNA-seq and snRNA-seq data, we 
identified causal tissues and cell types for TAAD. Lastly, we developed 
a genome-wide PRS for TAAD that identifies a subset of the population 
at substantially greater risk for TAAD.

These findings permit several conclusions. First, we provide sub-
stantial evidence that the genetic architecture of TAAD mirrors that of 
other complex traits. Current understanding of the pathophysiology 
of TAAD has largely been informed through the investigation and 
identification of rare deleterious variants within what are now termed 

HTAAD genes. These identified genetic variants, generally missense or 
nonsense mutations, substantially alter a gene’s protein product and 
subsequently disrupt critical functions in VSMC contraction, extracel-
lular matrix stabilization or transforming growth factor (TGF)-β sign-
aling6. While prior GWAS have identified four TAAD risk loci3–5, given 
the relatively rare incidence of TAAD in the population, it remained 
unclear whether common or rare variants were the primary driver 
of TAAD heritability. In the current study, we increase the number of 
TAAD risk loci by a factor of five and identify putative causal risk genes 
that likely affect disease through changes in gene expression, akin to 
other common complex traits. These findings offer new potential 
targets for therapeutic intervention as well as firmly establish TAAD 
as a complex trait.

Second, despite its morphologic similarities with infrarenal 
abdominal aortic aneurysm, our results support the notion that 
TAAD is a distinct disorder from the rest of the atherosclerotic car-
diovascular disease spectrum. Early observational studies of TAAD 
often studied abdominal and thoracic aortic aneurysms together16, 
and suggested common risk factors for both diseases included 
hypertension, smoking and hyperlipidemia. While an association 
between atherosclerosis and ascending aortic aneurysms has been 
observed45, whether the two pathologic processes share underlying 
causal mechanisms remained unknown. Here, through causal infer-
ence methods, we provide genetic support for a causal role of smok-
ing and hypertension on TAAD risk. However, unlike for abdominal 
aortic aneurysm46,47 and other cardiovascular diseases48,49, circulat-
ing lipoproteins do not appear to play a substantial role in TAAD 
development. The loci revealed in our genetic discovery analysis 
highlight the role of extracellular matrix integrity in TAAD, and the 
tissue and cell type enrichment analyses underscore the importance 
of VSMCs in TAAD risk. Prior lineage-mapping studies suggest that 
the embryologic origin of VSMCs in the thoracic aorta differing from 
that of the rest of the arterial tree may play a role in susceptibility to 
atherogenic conditions50. In light of these findings, we hypothesize 
that therapies focusing on restoring extracellular matrix stability 
rather than on atherosclerotic risk factor modification will be more 
likely to provide a substantial impact on TAAD prevention.

Third, our data provide additional evidence for the clinical utility 
of TAAD PRSs. Although recent literature focusing on PRS application 
has demonstrated an ability to risk stratify the population at large51, crit-
ics have highlighted that this research has focused on diseases in which 
genetic testing is seldom indicated52, unlikely to substantially alter 
clinical outcomes53, or that may not be justified within current health-
care cost structures7. However, unlike other diseases, testing for herit-
able causes of TAAD is already performed, typically through exome 
sequencing in those with familial or early-onset TAAD syndromes to 
identify pathogenic variants54. Here, we demonstrate that individuals 
within the upper tail of the PRS distribution are at substantially greater 
risk to experience TAAD or TAAD-related mortality. Furthermore, we 
observed similar gains in the calculated AUC statistic when adding 
pathogenic or likely pathogenic TAAD risk variants or PRSs (TAAD PRS) 
to risk-prediction models, suggesting that there is an additional benefit 
for PRS testing to include common variation beyond current targeted 
or exome-sequencing panels. In sum, our data suggest that extending 

Fig. 4 | Causal TAAD cell types. Dot plots for each of the nine candidate causal 
genes likely affecting TAAD risk based on changes in gene expression in scRNA-
seq data from aneurysmal and unaffected ascending aortas35 (a) and snRNA-seq 
data from unaffected ascending and descending thoracic aortas10 (b).  
c, t-distributed stochastic neighbor embedding (t-SNE) plot of cell type clusters 
for scRNA-seq data from aneurysmal and unaffected ascending thoracic aortas. 
Violin plots (d) and relative expression (e) of each of the nine candidate causal 
genes likely affecting TAAD risk based on changes in gene expression for each cell 
type. *Two-sided P value < 0.005 after Bonferroni correction for the maximum 
number of tests in each cluster (nine) when performing the Wilcoxon rank-sum 

test for differential expression in aneurysmal ascending thoracic aortic tissue 
versus unaffected tissue35. f, Prioritized cell type(s) for each of the nine candidate 
causal genes above depicted along a representative thoracic aortic cross-section. 
This figure was created with the assistance of BioRender. Abbreviations: AA, 
ascending aorta; TA, thoracic aorta; ATA, ascending thoracic aneurysm; scRNA-
seq, scRNA-seq data; snRNA-seq, snRNA-seq data; SMC, smooth muscle cell; 
MonoMaphDC, monocyte–macrophage–dendritic cell; NK, natural killer cell; 
EC, endothelial cell; ?, unclear cell type as referenced10; MSC, mesothelial cell or 
mesenchymal–stromal cell.
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current genetic panels to include testing for polygenic TAAD risk may 
be warranted and deserves further study.

Our study should be interpreted in the context of its limitations. 
First, our TAAD phenotype is based on EHR diagnosis and procedural 
code data and may result in misclassification of case status. However, 
such misclassification should, on average, reduce statistical power for 
discovery and bias results toward the null. Second, the VA Healthcare 
System population is overwhelmingly male, and our ability to detect 
sex-specific genetic associations in discovery was limited. Third, power 
to detect differential expression associations and identify causal TAAD 
cell types in scRNA-seq and snRNA-seq data may be limited by sequenc-
ing depth, sample size or tissue-processing techniques. Fourth, while 
we observe a significant MR result for height exposure and TAAD, we 
cannot rule out the possibility that this association is driven by the 
pleiotropy of height-associated variants55, rather than a true causal 
association. Similarly, when examining the scatterplots for each of 
the significant MR associations, it is possible that the positive results 
may not necessarily be attributable to a true causal effect but rather 
that the MR association results may reflect shared biological pathways 
between the risk factor and TAAD. Finally, a number of the TAAD risk 
loci demonstrate genome-wide significant associations with increased 
DBP. Our MR results support a causal role for DBP in TAAD susceptibil-
ity; however, our sensitivity analysis suggests that DBP is not the sole 
driver of TAAD risk at these regions of the genome. Disentangling the 
effects of hypertension on proximal aortic dilation and dissection, a 
pathologic process that alters human blood pressure homeostasis, is 
likely to require model systems to completely elucidate the complex 
mechanisms at work.

In conclusion, our data provide new mechanistic insights into 
TAAD risk and demonstrate that its genetic architecture is akin to that 
of other complex traits. We identify causal risk factors, cell types and 
genes that may be used to inform clinical care.
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Methods
Study populations
We conducted a discovery genetic association analysis using DNA 
samples and phenotypic data from the MVP (Supplementary Fig. 1). 
In the MVP, individuals aged 18 to over 100 years have been recruited 
from 63 VA medical centers across the United States. After quality 
control, we identified 7,050 participants of European, 1,266 par-
ticipants of African and 310 participants of Hispanic ancestry with 
TAAD and 453,043 controls free of clinical evidence of disease. For 
variants meeting genome-wide significance (P < 5 × 10−8) in the MVP, 
we sought replication of our findings with data from a meta-analysis 
of six external datasets comprising 4,459 TAAD cases and 512,463 
controls (Supplementary Table 22). Additional details of the MVP 
and replication genetic data and quality control are available in the 
Supplementary Information.

TAAD phenotype definitions
From the participants passing quality control in the MVP, individuals 
were defined as having TAAD based on possessing at least two of the 
ICD-9 or ICD-10 codes or CPT codes outlined in Supplementary Table 
23 in their EHR on separate dates and possessing zero codes suggesting 
a possible history of bicuspid aortic valvular disease (Supplementary 
Table 24). Individuals were defined as not having TAAD if they had zero 
diagnosis or procedure codes suggesting a diagnosis of TAAD (Sup-
plementary Table 25) and their EHR reflected two or more separate 
encounters in the VA Healthcare System in each of the 2 years before 
enrollment in the MVP. In the replication cohorts, TAAD definitions 
are described in Supplementary Table 22. The MVP received ethical 
study protocol approval by the VA Central Institutional Review Board, 
analysis in the UK Biobank was approved by a local institutional review 
board at Partners Healthcare (protocol 2013P001840), and informed 
consent was obtained for all participants. Additional information 
regarding experimental design and participants is provided in the 
Nature Portfolio Reporting Summary.

Stepwise conditional analysis
We used the COJO-GCTA software9 to perform an approximate, step-
wise conditional analysis to identify independent variants within 
TAAD-associated loci. We used TAAD summary statistics from the 
overall meta-analysis to conduct this analysis combined with an LD 
matrix obtained from 10,000 unrelated, ancestry-matched (86% Euro-
pean, 10% African, 3.5% Hispanic) individuals from the Penn Medicine 
BioBank. Before this conditional analysis, we aligned our summary 
statistics with the ancestry-matched reference panel using the DENTIST 
software56. We set a threshold P < 5 × 10−8 (genome-wide significance) 
to declare statistical significance.

PheWAS of TAAD risk variants
The IEU OpenGWAS project13,14 is a publicly available online repository 
of a wide array of summary statistics from previously published GWAS 
and the UK Biobank. For TAAD lead variants identified in our GWAS anal-
ysis, we queried the phenotypes available in the IEU OpenGWAS project 
to perform a PheWAS12 across a range of over 2,000 conditions, diseases 
and metabolites. Details of the sensitivity analysis re-examining DBP 
and height-associated variants with TAAD accounting for blood pres-
sure and height using individual-level data in the MVP are described in 
the Supplementary Methods.

TAAD risk factor Mendelian randomization analyses
MR analyses for smoking (through a lifetime smoking index), lipid levels 
(triglycerides, HDL and LDL cholesterol), blood pressure (SBP, DBP, 
PP and MAP) and height exposure were performed with TAAD as the 
outcome. Given that some of the above exposure summary statistics 
included UK Biobank data, the TAAD outcome summary data included 
all of the studies in our analysis except the UK Biobank, encompassing 

12,422 TAAD cases and 578,768 controls. Genetic instruments were 
selected as DNA sequence variants that were associated with the expo-
sure at genome-wide significance (P < 5 × 10−8) with an R2 < 0.001. All 
clumping was performed using the TwoSampleMR R package57. Genetic 
instruments were constructed for the lifetime smoking index (462,690 
participants)17, lipid levels (up to 188,577 participants)18, blood pressure 
(up to 436,845 participants; https://pan.ukbb.broadinstitute.org) and 
height (253,288 individuals)19 using publicly available summary sta-
tistics (Supplementary Table 14). Inverse-variance-weighted MR was 
used for the primary analysis, with weighted-median20 MR performed 
as the sensitivity analysis, allowing for up to 50% of the weight of each 
instrument to be drawn from invalid instruments while controlling type 
I error. MR-Egger22 analysis was performed to evaluate for horizontal 
pleiotropy, as was the MR-PRESSO21 test, which consists of three parts: 
(1) the global test for horizontal pleiotropy, (2) the outlier-corrected 
causal estimate, which corrects for the detected horizontal pleiotropy 
and (3) the distortion test, which tests whether the causal estimate is 
significantly different after outlier adjustment. Given the high genetic 
correlation among blood pressure traits, we then used the MR-BMA 
methodology23 to generate multivariable models for analysis to prior-
itize the most likely causal blood pressure traits. Further details of the 
MR-BMA methods are contained in the Supplementary Information.

Causal TAAD gene and variant identification
We prioritized candidate causal genes at each of the identified TAAD 
risk loci by aggregating evidence from (1) prior genetic, clinical or 
functional studies, (2) the closest gene to the lead risk variant, (3) 
genes with protein-altering variants in high LD (R2 > 0.8) with the lead 
TAAD risk variant, (4) cis eQTL from the GTEx dataset in aortic tissue29 
with association P < 5 × 10−6, (5) results from FOCUS28 version 0.5, a 
fine-mapping technique to identify causal genes in a TWAS58 using 
bulk RNA-seq data from post-mortem aortic tissue (387 individuals 
from GTEx) and TAAD meta-analysis (discovery and replication) sum-
mary statistics and (6) results of a colocalization analysis from our 
TAAD GWAS meta-analysis and eQTL data from GTEx bulk RNA-seq 
data in aortic tissue using the coloc R package59. Further methodologic 
details of these analyses and an analysis identifying putative causal 
TAAD risk variants are described in the Supplementary Information.  
Genes prioritized as causal (beyond FBN1 (ref. 24), ELN25, LRP1  
(refs. 26,27) and TCF7L2 (ref. 5) where prior literature has established 
these as the likely causal genes) were identified based on having  
(1) three prioritization strategies highlighting it as a likely causal  
gene and (2) plausible biological evidence for a role in TAAD patho
genesis based on prior genetic, clinical or functional studies.

Stratified LD score regression analysis
As an initial enrichment analysis, we partitioned the heritability of 
TAAD using stratified LD score regression32. Stratified LD score regres-
sion leverages GWAS summary to estimate the heritability explained 
by each functional classification while accounting for LD structure 
and other annotations. For this analysis, we combined the TAAD 
meta-analysis summary statistics and a previously published set of 
205 cell type annotations from GTEx29 and the previously defined 
‘Franke lab dataset’ (ref. 32). For this analysis, we approximated the LD 
structure from Europeans within the 1000 Genomes40 reference panel 
and set Bonferroni-corrected P < 0.00024 (0.05 ÷ 205 annotations) for 
statistical significance.

Enrichment analysis with human thoracic aorta snRNA-seq data
We generated a gene set of 21 putative causal TAAD risk genes: the 11 can-
didate causal genes identified from our GWAS as well as ten additional 
previously identified definitive or strong HTAAD genes (‘category A’)6  
and overlapped our gene set with publicly available snRNA-seq data 
from ascending and descending thoracic aorta specimens10. We 
downloaded single-nucleus expression data and existing t-SNE cluster 
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annotations for each cell from the Broad Institute Single Cell Portal 
(https://singlecell.broadinstitute.org/single_cell) and combined the 
clusters into five overarching cell categorizations: VSMCs, fibroblasts, 
endothelial cells, leukocytes and other cells (Supplementary Table 20).  
We then calculated average expression for each gene across all cells 
in that cell type. For each cell type, we calculated the enrichment  
P value for our list of causal TAAD risk genes using the ‘fgsea’ R package 
version 1.20.0, which searches for over-representation of our gene list 
in ranked genes for each cell type, as implemented in R 4.1. A Bonfer-
roni two-sided P value < 0.01 (0.05 ÷ 5 cell types) was used to declare 
statistical significance.

Cell type prioritization in scRNA-seq and snRNA-seq data
For nine genes that we hypothesized influence TAAD risk through alter-
ations in gene expression (‘candidate causal genes through changes in 
expression’ in Supplementary Table 17), we prioritized causal cell types 
using scRNA and/or snRNA-seq data generated from thoracic aorta 
specimens. Previously published scRNA-seq data from control (n = 3) 
and ascending thoracic aortic aneurysm cases (n = 8) were reanalyzed 
using Seurat (version 4)35,60. Briefly, dimensionality reduction was pre-
viously performed using t-SNE, and identification of cluster-defining 
genes was performed using the FindAllMarkers function. Feature 
plots (order = TRUE, min.cutoff = ‘q1’, max.cutoff = ‘q95’, raster = TRUE, 
pt.size = 2.5), violin plots (split.plot = TRUE, split.by = ‘stim’), dot plots 
and heat maps were generated using Seurat (version 4). Within each 
cluster, differential gene expression based on case–control status 
was performed with FindAllMarkers (group.by = ‘stim’), and a Bonfer-
roni P value < 0.005 (0.05 ÷ 9 maximum genes per cluster) was set for 
statistical significance. Previously published snRNA-seq data from the 
thoracic aorta were downloaded from the Broad Single Cell Portal10. 
Data from the cells were processed in R Studio with Seurat (version 4)  
according to the pipeline described above, with metadata of the origi-
nal clustering added. Briefly, cells were filtered based on the follow-
ing parameters: 250 < nFeatureRNA < 2,500, nCount_RNA > 500 and 
percent.mt < 0.5%. Variable features were scaled using ScaleData for 
percent.mt. Dimensionality reduction with UMAP was performed, and 
dot plots were generated with group.by = ‘Category’ corresponding to 
the original clusters from Pirruccello et al.10.

TAAD polygenic risk score generation
A weighted PRS represents an individual’s risk of a given disease con-
ferred by the sum of the effects of many common DNA sequence vari-
ants. A weight is assigned to each genetic variant based on its strength 
of association with disease risk (β). Individuals are then additively 
scored in a weighted fashion based on the number of risk alleles that 
they carry for each variant in the PRS.

To generate our scores, we used summary statistics from the MVP 
multi-ancestry discovery GWAS (8,626 TAAD cases, 453,043 controls) 
and an LD panel from 1000 Genomes40 whole-genome-sequencing 
data. To increase the number of independent variants included in our 
score, we used the PRS-CSx version 1.0 software, which uses Bayesian  
methods to generate posterior genetic variant effect sizes under cou-
pled continuous shrinkage priors41. The latest iteration of the software 
allows for integration of summary statistics across multiple popula-
tions to improve polygenic predictions across ancestries. The Euro-
pean, African and Hispanic ancestry summary statistics were input 
with European, African and Admixed American reference panels from 
1000 Genomes, and default software parameters were used including 
the use of HapMap61 imputed variants for PRS generation and allow-
ing PRS-CSx to generate the global shrinkage parameter φ through a 
Bayesian approach.

We then tested our scores in three separate datasets. For initial 
validation, we tested the normalized PRS using prevalent data from 
the Mass General Brigham Biobank in 775 individuals with and 24,518 
individuals without TAAD of European ancestry. Next, we assessed the 

performance of the PRS in an updated freeze of the CHIP–MGI cohort 
(3,743 cases and 51,898 controls) and subsequently compared these 
results (in terms of effect estimate and AUC) to the effects of a set of 
previously curated, pathogenic or likely pathogenic TAAD risk variants 
among individuals with exome-sequencing data available (a subset of 
1,842 cases and 1,887 controls). In a sensitivity analysis, we also exam-
ined the effects of rare missense variants with a REVEL43 score >0.5 and 
high-confidence LOFTEE44 predicted loss-of-function variants in one 
of the 11 HTAAD genes. Lastly, we examined whether the TAAD PRS was 
associated with an increase in risk of incident TAAD and TAAD-related 
mortality within the UK Biobank among 281 participants with incident 
TAAD, 22 participants with TAAD-related deaths and 359,000 partici-
pants without TAAD of European ancestry.

Statistical analysis
In our primary discovery analysis, genotyped and imputed DNA 
sequence variants in individuals of European, African and Hispanic 
ancestry were tested for association with TAAD using logistic mixed 
models as performed in the REGENIE version 2.0 statistical software 
program62. We included in step 1 of REGENIE (that is, prediction of 
individual trait values based on genetic data) variants that were directly 
genotyped and had a minor allele frequency >1%, <10% missingness 
and a Hardy–Weinberg equilibrium test P value > 10−15. The association 
model used in step 2 of REGENIE included as covariates age, sex and five 
principal components of ancestry. Next, associated statistics across 
MVP participants of European, African and Hispanic ancestry were 
meta-analyzed using an inverse-variance-weighted fixed-effect method 
as implemented in the METAL software program63. We excluded vari-
ants with a high amount of heterogeneity (I2 statistic > 75%) across the 
three ancestries.

For variants meeting genome-wide significance for TAAD 
(P < 5 × 10−8), we sought replication of our findings from a combina-
tion of six external cohorts representing 4,459 individuals with TAAD 
and 512,463 individuals without TAAD. Details of participant selection, 
quality control, phenotyping and statistical analysis are presented in 
Supplementary Table 22.

We defined significant new TAAD associations as those that were at 
least nominally significant in replication (P < 0.05), were directionally 
consistent in both cohorts and had an overall P < 5 × 10−8 (genome-wide 
significance) in the discovery and replication cohorts combined. New 
loci were defined as being more than 500,000 bp away from a known 
TAAD genome-wide associated lead variant. Additionally, LD informa-
tion from the 1000 Genomes Project38 was used to determine inde-
pendent variants for which the association peak extended beyond 
500,000 bp. All logistic regression P values were two sided.

In the PheWAS analysis, DNA sequence variants were queried 
in the IEU OpenGWAS project13,14, an online resource of association 
statistics from previously conducted GWAS, and used a genome- 
wide significant P-value threshold (two-sided P < 5 × 10−8) to declare 
statistical significance.

In our MR analyses, a random-effect inverse-variance-weighted 
method was used as the primary analysis, with sensitivity analyses 
performed for the statistically significant associations as described 
above. We set a two-sided P value < 0.0055 (0.05 ÷ 9 traits) for statistical 
significance. For the MR-BMA analysis, the Nyholt procedure of effec-
tive tests64 was used to account for the strong correlation among the 
blood pressure traits, with a multiple-testing-adjusted P value = 0.05 
set as the significance threshold.

In the association analysis of TAAD risk variants with ascending 
and descending aortic diameters, we queried previously published 
GWAS summary statistics from the UK Biobank in which these meas-
urements were extracted from MRI images using a deep learning 
model10. We used a Bonferroni-corrected two-sided P value < 0.0012 
(0.05(2 phenotypes × 21 variants)−1) to declare statistical significance. 
In the analysis examining the association of previously published 
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aortic diameter10 loci with TAAD, we tested the 81 ascending and 46 
descending aortic diameter autosomal loci with MAF > 0.01. We used 
a Bonferroni-corrected two-sided P value < 0.0004 (0.05(81 ascend-
ing + 46 descending loci)−1) to declare statistical significance.

In our PRS analysis, logistic regression models (prevalent cases) 
were used to estimate ORs and 95% CIs for associations of the continu-
ous PRS (1 s.d. unit) with TAAD in the Mass General Brigham Biobank 
and CHIP–MGI adjusting for age, sex and five principal components. 
We additionally calculated the prevalence of TAAD for the 5% of indi-
viduals with the highest PRS relative to the rest of the population and 
generated CIs using R (version 4.1). In CHIP–MGI, we also tested the 
association of rare, pathogenic variants with TAAD risk using logistic 
regression and adjusting for age, sex and principal components. In 
a sensitivity analysis, we examined the TAAD risk conferred through 
rare missense variants with a REVEL43 score >0.5 and high-confidence 
LOFTEE44 predicted loss-of-function variants in one of the 11 HTAAD 
genes. Following analysis, an AUC statistic was generated for each of 
these models.

In the UK Biobank, we tested the association of the 5% of individu-
als with the highest TAAD PRS relative to the rest of the population with 
incident TAAD events and incident TAAD-related mortality using Cox 
proportional hazard models adjusting for age, sex and five principal 
components of ancestry in the white British subset of UK Biobank 
participants. Prevalent cases were excluded, and individuals were 
censored upon death, when experiencing the relevant event or at the 
end of follow up (a median of 11.1 years). We declared a P value < 0.0125 
for statistical significance (0.05 ÷ 4 tests: associations for (1) the con-
tinuous PRS, (2) the top 5% PRS, (3) rare TAAD risk variants and (4) 
TAAD-related death). All P values were two-sided.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The full summary-level association data from the MVP TAAD dis-
covery analysis from this study are available through dbGAP, 
under accession code phs001672.v10.p1 (https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.
v10.p1). UK Biobank individual-level data are available for request 
by application (https://www.ukbiobank.ac.uk). Thoracic aortic 
aneurysm GWAS summary statistics from CHIP–MGI are avail-
able here: http://csg.sph.umich.edu/willer/public/TAA2021/. 
Individual-level Mass General Biobank data and Penn Medicine 
BioBank data are available at https://personalizedmedicine. 
partners.org/Biobank/Default.aspx and https://pmbb.med.upenn. 
edu/, but restrictions apply to the availability of these data, which 
were used under IRB approval for the current study and thus are not 
publicly available. Requests for the use of individual-level data from 
HUNT must be approved by the K.G. Jebsen Center for Genetic Epide-
miology at NTNU. Applications are sent to HUNT and then discussed 
with the center. All scRNA-seq and snRNA-seq data were previously 
made publicly available at the Gene Expression Omnibus and can be 
accessed at GSE155468 or from the Broad Institute Single Cell Portal 
(https://singlecell.broadinstitute.org/single_cell).

Code availability
Data were collected using the EasyQC package and the REGENIE ver-
sion 2 software program as outlined in the Supplementary Methods. 
Additional software used for analysis includes the coloc R package, 
FOCUS–TWAS version 0.5, Eigensoft version 6, PRS-CSx version 
1.0 and Seurat version 4. Clear code for analysis is available at the 
associated software websites, as standard analysis pipelines were 
used. Any code for use in the above software will be provided at 
reasonable request.
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