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Divergent clonal differentiation trajectories 
of T cell exhaustion

Bence Daniel    1,2,3,11, Kathryn E. Yost2,11, Sunnie Hsiung    4,11, Katalin Sandor    1,3, 
Yu Xia4, Yanyan Qi1, Kamir J. Hiam-Galvez    1,3, Mollie Black1,3, 
Colin J. Raposo    1,3, Quanming Shi1,2, Stefanie L. Meier1,3,5, Julia A. Belk    1,3, 
Josephine R. Giles6,7,8, E. John Wherry    6,7,8, Howard Y. Chang    2,9,12, 
Takeshi Egawa    4,12 and Ansuman T. Satpathy    1,3,5,10,12 

Chronic antigen exposure during viral infection or cancer promotes an 
exhausted T cell (Tex) state with reduced effector function. However, whether 
all antigen-specific T cell clones follow the same Tex differentiation trajectory 
remains unclear. Here, we generate a single-cell multiomic atlas of T cell 
exhaustion in murine chronic viral infection that redefines Tex phenotypic 
diversity, including two late-stage Tex subsets with either a terminal 
exhaustion (Texterm) or a killer cell lectin-like receptor-expressing cytotoxic 
(TexKLR) phenotype. We use paired single-cell RNA and T cell receptor 
sequencing to uncover clonal differentiation trajectories of Texterm-biased, 
TexKLR-biased or divergent clones that acquire both phenotypes. We show 
that high T cell receptor signaling avidity correlates with Texterm, whereas low 
avidity correlates with effector-like TexKLR fate. Finally, we identify similar 
clonal differentiation trajectories in human tumor-infiltrating lymphocytes. 
These findings reveal clonal heterogeneity in the T cell response to chronic 
antigen that influences Tex fates and persistence.

Chronic antigen exposure during viral infections and cancer leads 
to impaired CD8+ T cell responses characterized by reduced effector 
function, diminished proliferative capacity and high expression of 
inhibitory receptors, including PD-1, LAG-3 and TIM3, termed T cell 
exhaustion1,2. However, exhausted T cells (Tex) maintain some effec-
tor functions and persist long-term, suggesting that Tex may control 
pathogen burden while maintaining immune homeostasis3,4. Recent 
studies have identified heterogeneity in Tex phenotypes characterized 
by distinct surface receptors, functionality, proliferative capacity and 
tissue localization5–12. Some studies support a linear differentiation 
model, whereby TCF1+CXCR5+PD-1+ progenitor Tex (Texprog) self-renew 

and maintain downstream Tex subsets, including CX3CR1+PD-1+ inter-
mediate Tex (Texint) and PD-1+TIM3+ terminal Tex (Texterm)5–9,13–15. These 
subpopulations exhibit distinct epigenetic states with TCF1 and BACH2 
driving Texprog formation, whereas the high mobility group transcrip-
tion factor (TF), TOX, orchestrates the exhaustion program in all Tex sta
tes4,7,16–21. Finally, Tex subsets are further distinguished by their ability 
to respond to immune checkpoint blockade (ICB); Texterm possess a 
stable epigenetic program and cannot be reinvigorated by ICB, whereas 
Texprog can proliferate in response to ICB and may be important for 
therapeutic response3,6,22. Despite these advances, we lack a compre-
hensive view of Tex states, their clonal relationships and the molecular 
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(S1pr5, Cx3cr1, Klrc1; emerging late in C13 infection), lung terminal 
exhausted cells (Texlung; Lag3, Ifng, Ccl4) and interferon signature gene 
Tex (Isg15, Ifit1, Isg20; Fig. 1c,e). We observed eight analogous T cell pop-
ulations in the scATAC-seq data based on integration with scRNA-seq 
data (Fig. 1d and Extended Data Fig. 1f). As our goal was to analyze Tex 
epigenetic states, we did not perform scATAC-seq at D21 in Arm infec-
tion or in lung or liver T cells in Cl13 infection; thus, scATAC-seq clusters 
did not include Tem, Tmem or Texlung subsets. However, scATAC-seq clus-
ters did reveal additional heterogeneity among effector populations 
mainly derived from the Arm condition (Teff and Teff2; Fig. 1d,f).

scATAC-seq profiles were analyzed at the level of: (1) cis-regulatory 
element chromatin accessibility (open chromatin regions; OCRs); (2) 
gene activity scores, computed from OCR accessibility, weighted by 
distance; and (3) TF activity, computed from TF binding site enrichment 
in OCRs or genome-wide24,25. Cell-type-specific OCR accessibility was 
correlated with gene expression at marker gene loci that define Tex 
subsets, including Tcf7, Pdcd1 and Tox (Fig. 1g,h and Supplementary 
Table 2). Tnaive-specific OCRs were enriched for the TCF/LEF motifs, 
which were also enriched in Texprog, along with other known Texprog TFs 
(for example, BATF, AP-1 and BACH)14,18,26,27. Texeeff showed NFAT motif 
enrichment, whereas KLF motifs were specifically enriched in the Texint, 
Teff and TexKLR populations. Finally, Texterm-specific OCRs exhibited 
strong enrichment for NR4A, RUNX and NFAT TF motifs (Extended 
Data Fig. 1g and Supplementary Table 3)28–31.

CX3CR1+ Tex comprise two functionally distinct 
subsets
We next examined heterogeneity within CX3CR1+ Tex cells, which 
have recently been described as a functional intermediate cell state 
between Texprog and Texterm8,9,13. scRNA-seq of sorted CX3CR1+ T cells 
from D21 of Cl13 infection revealed heterogeneity that primarily 
spanned two distinct phenotypes (Texint and TexKLR; Fig. 2a). To under-
stand the transcriptional programs that distinguish Texint from TexKLR, 
we performed DEG analysis and found 206 TexKLR-biased genes and 
384 Texint-biased genes (Fig. 2b and Supplementary Table 4). Pathway 
analysis revealed enrichment for T cell-exhaustion-related biological 
terms in Texint, cell-cycle-related terms in both populations and T cell 
activation-related and/or motility-related terms in TexKLR (Extended 
Data Fig. 2a). Notably, many markers of terminal effector and effector 
memory T cells, including KLR family members (for example, Klrd1, 
Klrk1, Klrc1, Klre1 and Klrg1) and the TF Zeb2 and its target gene S1pr5 (a 
marker of tissue emigrating T cells), showed highly specific expression 
patterns in TexKLR32,33. By contrast, Texint expressed canonical exhaus-
tion markers (for example, Ctla4, Pdcd1, Lag3) and TCR signaling genes 
(for example, Coro1a) (Fig. 2b). Similar gene expression signatures 
were detected when comparing TexKLR and Texterm with a more pro-
nounced exhaustion signature in the latter (for example, Cxcr6, Cd101, 
Tigit) (Fig. 2b and Supplementary Table 5). To support an intermediate 
exhaustion state in Texint, we analyzed CXCR6 surface expression in 
Texprog (CX3CR1−SLAMF6+KLRG1−), Texint (CX3CR1+SLAMF6−KLRG1−) 
and Texterm (CX3CR1−SLAMF6−KLRG1−) by flow cytometry; the results 
showed intermediate CXCR6 expression in Texint compared with Texterm 
and Texprog (Extended Data Fig. 2b).

programs underlying their differentiation, particularly in polyclonal 
T cell responses.

Here, we generate a Tex differentiation atlas using single-cell 
chromatin accessibility, transcriptome and T cell receptor (TCR) 
sequencing of antigen-specific CD8+ T cells during chronic lympho-
cytic choriomeningitis virus (LCMV) infection. We discover new Tex 
subsets, including an early effector exhausted subset (Texeeff) that initi-
ates the molecular exhaustion program and the TexKLR subset, which 
emerges as a late-stage phenotype concurrent with Texterm. T cell clone 
tracing with paired single-cell RNA (scRNA)/TCR sequencing (scRNA/
TCR-seq) nominates diverse Tex differentiation trajectories, including 
Texterm-biased, TexKLR-biased or divergent fates, comprising both cell 
types. Tex clones traffic to multiple organ sites where their differen-
tiation trajectories are conserved; however, TexKLR-biased clones are 
depleted in the liver, suggesting that Texterm may be phenotypically 
adapted for specific tissue microenvironments. Finally, we show that 
clone trajectories correlate with TCR signaling avidity; high-avidity TCR 
clones are biased towards Texterm, whereas low-avidity TCR clones are 
biased towards TexKLR. Overall, these results provide an in-depth view 
of the gene regulatory programs and clonal dynamics of Tex states 
during chronic infection.

A multiomic atlas of T cell exhaustion
To profile CD8+ T cell exhaustion, we used mouse models of acute 
(LCMV Armstrong; Arm) or chronic (LCMV clone 13; Cl13) viral infec-
tion. These two viral strains share immunodominant epitopes, enabling 
direct comparison of antigen-specific T cell responses23. We generated 
paired scRNA/TCR-seq and single-cell assay for transposase accessible 
chromatin with sequencing (scATAC-seq) data from LCMV glycoprotein 
33–41 tetramer-positive (gp33+) and tetramer-negative (gp33−) splenic 
CD8+ T cells at day 8 (D8) and day 21 (D21) postinfection (Fig. 1a–d). 
At D21 of Cl13 infection, we also generated scRNA/TCR-seq of gp33+ 
and gp33− populations from two additional organs (lung and liver; 
Fig. 1a,c and Extended Data Fig. 1a). Finally, we sorted D21 Cl13 splenic 
T cells using previously defined surface markers that identify Texprog 
(PD-1+SLAMF6+CX3CR1−), Texint (PD-1+CX3CR1+SLAMF6−) and Texterm 
(PD-1+SLAMF6−CX3CR1−) phenotypes and performed scRNA/TCR-seq 
and scATAC-seq (Extended Data Fig. 1b)7–9,13. In total, we obtained 96,750 
scRNA-seq profiles that passed quality control and detected TCR alpha 
and beta sequences in 88,696 T cells (91.7%), comprising 5,197 expanded 
T cell clones (clones >1 cell; Fig. 1c and Extended Data Fig. 1c). In addi-
tion, we obtained 62,731 scATAC-seq profiles that passed quality control 
(Fig. 1d and Extended Data Fig. 1d,e).

We performed uniform manifold approximation and projection 
(UMAP) for dimensionality reduction and identified 11 scRNA-seq 
clusters, which were annotated based on differentially expressed genes 
(DEGs). In Arm infection, we observed naive T cells (Tnaive; Ccr7, Sell, 
Lef1), effector T cells (Teff; Klrg1, Ly6c2), effector memory T cells (Tem; 
Klrb1c, Klrd1, S1pr1) and memory T cells (Tmem; Il7r, Sidt1, Gpr183; Fig. 
1e and Supplementary Table 1). In Cl13 infection, we observed Texprog 
(Slamf6, Id3), Texint (Lgals3, S100a4, Mki67) and Texterm (Gzma, Cd101, 
Entpd1), as expected (Fig. 1c,e). In addition, we observed Texeeff (Xcl1, 
Top2a, Mif; a predominant population at D8 of C13 infection), TexKLR 

Fig. 1 | Single-cell genomic atlas of T cell exhaustion during LCMV infection.  
a, scRNA-seq UMAPs colored by sample. b, scATAC-seq UMAPs colored by 
sample. c, scRNA-seq UMAP colored by annotated T cell subsets (left) or 
T cell clone size assigned by scTCR-seq (right). d, scATAC-seq UMAP colored 
by annotated T cell subsets. e, Heat map of subset-specific marker genes 
determined by scRNA-seq (left, log2 FC > 0.25, Bonferroni-adjusted P < 0.01, 
two-sided Wilcoxon rank-sum test). Feature plots of T cell subset-specific gene 
markers (right). f, Heat map of gene score values (weighted accessibility at 
gene locus) determined by scATAC-seq (left, log2 FC > 0.5, false discovery rate 
(FDR) < 0.01, two-sided Wilcoxon rank-sum test adjusted using the Benjamini 

and Hochberg procedure). Feature plots of T cell subset-specific gene score 
values (right). g, Heat map of peak score values at unique OCRs of T cell subsets 
determined by scATAC-seq (left, log2 FC > 1, FDR < 0.05, two-sided Wilcoxon 
rank-sum test adjusted using the Benjamini and Hochberg procedure). Feature 
plots of chromVAR deviation (dev.) scores for T cell subset-specific motifs (right). 
h, Genome accessibility tracks of indicated gene loci in Tex subsets. Violin plots 
of gene expression (exp.) determined by scRNA-seq (n, number of scRNA-seq 
profiles; box center line, median; limits, upper and lower quartiles; whiskers,  
1.5× interquartile range). Min., minimum; max., maximum.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 23 | November 2022 | 1614–1627 1616

Article https://doi.org/10.1038/s41590-022-01337-5

Next, we focused on TexKLR and assessed the gene signature of 
terminal effector memory T cells (T-Tem), a recently described Tem subset 
identified during acute LCMV infection that expresses Teff markers, 
including KLRs34. The T-Tem gene signature was highly expressed in 

TexKLR, suggesting that this subset may represent a parallel differen-
tiation path to T-Tem (Fig. 2c,d). Finally, we assessed the functionality 
and proliferative capacity of gp33-specific Texterm, Texint and TexKLR 
(CX3CR1+KLRG1+SLAMF6−) by measuring IFNG, LAMP1 (cytotoxic 
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degranulation marker) and MKI67 using flow cytometry. These analyses 
demonstrated superior functional and proliferative capacity of TexKLR 
compared with Texterm and Texint (Fig. 2e and Extended Data Fig. 2c). 
In summary, the CX3CR1+ T cell pool contains two Tex subsets with 
distinct surface and functional phenotypes.

Tex acquire organ-specific terminal exhaustion 
signatures
We reclustered scRNA-seq profiles from gp33+ and gp33− CD8+ T cells 
from the spleen, lung and liver at D21 of Cl13 infection and examined Tex 
subset distribution across organs (Fig. 2f). Relative to splenic T cells, 
cells in the lung exhibited an alternative terminal exhausted phenotype 
(Texlung) and a reduced Texprog population, with similar TexKLR and Texint 
proportions (Fig. 2f,g). Strikingly, T cells in the liver almost exclusively 
adopted the Texterm phenotype, as previously described (95.5% Texterm;  
Fig. 2f,g)15. We further examined tissue-specific differences in the 
exhaustion signature by pairwise DEG analyses. Compared with splenic 
Texterm, liver-derived Texterm possessed a strong tissue-resident Tmem 
signature (for example, Cd69, Cxcr6, Ccl3) and a gene program linked to 
TNF- and glucocorticoid-induced signaling (Extended Data Fig. 2d and 
Supplementary Table 6). Similarly, lung-derived Texterm also exhibited 
typical markers of lung-resident Tmem (for example, Cxcr6, Cd44) and 
several integrin genes (for example, Itga4, Itgb7, Itgb1; Extended Data 
Fig. 2d and Supplementary Table 7). Furthermore, both liver-derived 
and lung-derived Texterm expressed higher levels of prosurvival genes 
(for example, Bcl2, Bcl2a1b, Bcl2a1d) than splenic Texterm (Extended 
Data Fig. 2d and Supplementary Tables 6–8). These results suggest 
that Texterm can obtain tissue residency programs and persist in tissues 
in the setting of chronic antigen.

Despite tissue-specific differences, we observed a common 
Texterm gene signature across all organs. This signature (n = 35 genes) 
contained previously described exhaustion-related genes, including 
immune checkpoint inhibitory receptors Pdcd1 and Tox (Fig. 2h). Next, 
we ranked the severity of exhaustion among Texterm from each organ 
using a previously defined exhaustion gene signature6. We observed 
that liver-derived Texterm scored the highest, followed by splenic and 
lung-derived Texterm (Fig. 2i). In line with these findings, flow cytometry 
analysis demonstrated increased frequencies of Texterm in the liver (88% 
of PD-1+CD8+ T cells) compared with the spleen (47%) and lung (51%;  
Fig. 2j,k,l). By contrast, we observed the highest frequency of Texprog in 
the spleen (18.3% of PD-1+CD8+ T cells). Texint and TexKLR were increased 
in the spleen (Texint: 32.33%; TexKLR: 6.59% of PD-1+CD8+ T cells) and lung 
(Texint: 44.77%; TexKLR: 10.01%) compared with the liver (Texint: 10.72%; 
TexKLR: 2.58%; Fig. 2j,k,l). We also scored Texterm and Texint profiled by 
scRNA-seq based on cell cycle activity, which ranked liver-derived cells 
as the least proliferative, followed by those derived from the lung and 
spleen, inversely correlating with the severity of exhaustion, and we 
confirmed these observations with flow cytometry (Extended Data 
Fig. 2e,f). These results demonstrate that T cell exhaustion develops 
across multiple organs with a common gene expression signature 

but microenvironment-specific effects are also detectable and shape 
tissue-specific Tex subset frequencies.

Clone tracing reveals divergent Tex 
differentiation fates
We next leveraged paired scRNA/TCR-seq data to analyze clonal trajec-
tories of gp33+ and gp33− (other reactive clones and nonreactive Tnaive 
cells) T cells during Arm and Cl13 (D8 and D21) infection in the spleen 
(Fig. 3a). We identified 212 and 280 expanded gp33+ T cell clones (>1 cell; 
53 and 40 expanded clones per 1,000 cells sequenced) at D8 and D21 of 
Arm infection, respectively, and 134 and 338 expanded clones (95 and 
36 expanded clones per 1,000 cells sequenced) at D8 and D21 of Cl13 
infection, respectively. At D8 of Arm infection, clonally expanded gp33+ 
T cells were largely restricted to the Teff pool, whereas at D21, clonally 
expanded gp33+ T cells exhibited a balanced distribution between Tem 
and Tmem (Fig. 3b and Extended Data Fig. 3a). By contrast, clonal expan-
sion in gp33+ T cells at D8 in Cl13 infection occurred almost exclusively 
in Texeeff (Fig. 3c). Importantly, the Texprog population showed weak 
clonal expansion at D8. However, at D21, gp33+ specific expanded clones 
adopted all Tex phenotypes (Fig. 3c,d and Extended Data Fig. 3b).

We visualized the distribution of phenotypes for the top 10 
expanded gp33+ T cell clones at D8 and D21 in each infection. At D8 
of Arm infection, almost all cells acquired the Teff phenotype. At D21, 
top expanded clones acquired both Tem and Tmem phenotypes, with 
clone sizes ranging from 77 to 321 (mean 153 cells, 3.8% of 4,030 total 
cells; Fig. 3e and Extended Data Fig. 3a). By contrast, the top expanded 
clones in Cl13 infection primarily acquired the Texeeff phenotype at D8, 
with clone sizes ranging from 26–95 cells (mean 49, 3.5% of 1,414 total 
cells; Fig. 3e). Analysis of D21 of Cl13 infection identified substantially 
larger clones, ranging from 146–2,026 cells (mean 525, 5.6% of 9,343 
total cells; Fig. 3e). Strikingly, these clones contained cells with mul-
tiple Tex phenotypes, although the frequency of each phenotype 
varied between individual clones. Namely, individual clones either 
preferentially acquired the Texterm or TexKLR phenotypes or developed 
into both phenotypes (Fig. 3e and Extended Data Fig. 3b). We per-
formed an analysis of the top seven phenotypic distribution of clones 
(>3 cells), which revealed three main clonal differentiation patterns 
(clone behaviors): (1) Texterm-biased clones, consisting of cells that 
predominantly acquired the Texterm (46% of clones); (2) TexKLR-biased 
clones, consisting of T cells that predominantly acquired the TexKLR 
phenotype (18% of clones); and (3) divergent clones, consisting of cells 
that acquired Texterm and TexKLR phenotypes (36% of clones; Fig. 3f). 
Divergent clones were the most clonally expanded and ranged from 
4 to 2,026 cells (mean 145) per clone, whereas Texterm-biased clones 
ranged from 4 to 111 cells (mean 17) per clone. TexKLR-biased clones 
were relatively small and ranged from 4 to 21 cells (mean 8) per clone 
(Fig. 3g,h). We also noted several larger clones (4–233 cells, mean 
54) that skewed to the TexKLR phenotype (>50% of cells acquired the 
TexKLR phenotype) but had a small percentage of Texterm (Extended Data  
Fig. 3c). To account for sampling bias, we randomized T cell phenotype 

Fig. 2 | Identification of intermediate, KLR-expressing and organ-specific 
Tex subsets. a, scRNA-seq UMAP colored by T cell subset from sorted PD-
1+CX3CR1+CD8+ T cells (left). Stacked bar plot of the sorted population 
phenotypic distribution (right) b, Volcano plots of DEGs between indicated Tex 
populations (log2 FC > 0.25, Bonferroni-adjusted P < 0.05, two-sided Wilcoxon 
rank-sum test). c, Heat map of scaled marker gene expression of T-Tem cells 
(Milner et al. 2020)34 in indicated T cell subsets. d, Violin plot of T-Tem gene 
signature scores in indicated T cell subsets (n, number of scRNA-seq profiles; box 
center line, median; limits, upper and lower quartiles; whiskers, 1.5× interquartile 
range). e, Representative IFNG/LAMP1 flow cytometry plots of indicated Tex 
subsets (left). Box plot quantifying IFNG+LAMP1+ percentages for indicated Tex 
subsets. Significance determined by two-tailed, unpaired t-test (n = 5 biologically 
independent animals). Box center line, mean; limits, upper and lower quartiles; 
whiskers, minimum and maximum values. f, scRNA-seq UMAP from three organs 

at D21 following Cl13 infection colored by annotated T cell subsets. g, Stacked bar 
plot of gp33+ phenotypic distribution of annotated T cell subsets in three organs 
(left). UMAPs colored by organ (right). h, Heat map of scaled gene expression 
values of common exhaustion gene signature among Texterm from three organs.  
i, Violin plot of Texterm exhaustion scores from the three organs (Im et al. 2016)6; 
n, number of scRNA-seq profiles; box center line, median; limits, upper and lower 
quartiles; whiskers, 1.5× interquartile range. P values determined by two-sided 
Wilcoxon rank-sum test. j, Representative flow cytometry plots of Tex subsets 
detected in organs. k, Quantification of the PD-1+ and PD-1− fractions of CD8+ T 
cells across organs. Significance determined by two-tailed, unpaired t-test (n = 3 
biologically independent animals). Means with s.d. are shown. l, Quantification 
of fractions of indicated Tex subsets across organs. Significance determined by 
two-tailed, unpaired t-test (n = 3 biologically independent animals). Means with 
s.d. are shown.
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and TCR clone assignment to generate a null distribution of clone 
patterns; this revealed a striking enrichment of TexKLR-biased and 
Texterm-biased clone behavior over chance, whereas divergent clonal 
behavior was twice as likely to be detected by chance than observed 
in our data (Extended Data Fig. 3d). These results reveal new divergent 
clonal Tex differentiation trajectories during chronic infection (Fig. 3i).

Directions of clonal Tex differentiation fates
To understand cell state transitions in Tex differentiation paths, we 
used dynamo to perform RNA velocity analyses35,36. This analysis 
demonstrated that Texeeff at D8 transitioned to either Texint or Texprog 
fates, and at D21, Texint showed a bifurcation to either TexKLR or Texterm 
phenotypes (Fig. 4a). Furthermore, we applied dynamo to scRNA-seq 
profiles from individual TCR clones; divergent clones recapitulated 
bifurcating Tex differentiation trajectories from Texint to either Texterm 
or TexKLR, accompanied by increased transcription of Texterm or TexKLR 
genes (Fig. 4b,c). In addition, RNA velocity pseudotime of a divergent 
clone revealed a gene expression map of Tex differentiation from Texint  
to either terminal Tex state (Extended Data Fig. 4a). By contrast, 
Texterm-biased clones showed a linear RNA velocity path from Texint 
to Texterm, whereas TexKLR-biased clones primarily comprised TexKLR  
(Fig. 4b,c). It is important to note that this analysis summarizes the 
direction and magnitude of dominant local trajectories in UMAP space, 
rather than nominating terminal differentiation states35,36. For compari-
son, we performed velocity analyses in CD8+ T cells from Arm infection 
(Extended Data Fig. 4b).

We used scATAC-seq data to define changes in chromatin acces-
sibility that accompany these fate transitions (Extended Data Fig. 4c,d). 
Comparisons of OCRs and TF motif enrichments between Tex subsets 
demonstrated a high degree of similarity between Texeeff and Texprog. 
Similarly, Texint exhibited an intermediate chromatin state between 
Texterm and TexKLR states, with very few unique OCRs (Extended Data 
Fig. 4d). We analyzed 15,809 variable OCRs for TF motif enrichments, 
as well as gene integration scores, across three differentiation trajec-
tories nominated by RNA velocity and clonal trajectories: (1) Texprog 
trajectory (Texeeff → Texprec (precursor exhausted Tex, an early Texprog 
population present at D8 in Cl13 infection) → Texprog); (2) Texterm trajec-
tory (Texprog → Texint → Texterm); and (3) TexKLR trajectory (Texprog → Texint 
→ TexKLR; Fig. 4d). The Texprog trajectory showed a loss of HOMEOBOX 
TF motifs and enrichment of BATF, AP-1, BACH, NFKB, TCF and CTCF 
motifs. By contrast, in both Texterm and TexKLR trajectories, we observed 
a loss of Texprog-specific TF motifs in Texint, followed by enrichment of 
TF motifs that may guide the differentiation program of TexKLR (for 
example, ZEB, KLF, ETS, TBX, RUNX) and Texterm (for example, RUNX, 
IRF, STAT, NR4A; Fig. 4d).

Finally, we assessed the Tox locus, and found a gradual increase in 
accessibility during the Texeeff to Texprog transition. The Texterm trajec-
tory demonstrated a decrease in Tox accessibility during the Texprog to 
Texint transition and a subsequent increase in the Texterm state (Fig. 4d). 
We annotated differentially accessible OCRs (compared with Tnaive) in 
a ±250 kb window around the transcription start site (TSS) and identi-
fied 88 OCRs. Sixteen and eight OCRs were differentially accessible in 
Texeeff and Texprog, respectively; these results were supported by high 

Tox expression in these subsets (relative to Tnaive), indicating that TOX 
may initiate the molecular programming of Tex differentiation in these 
subsets (Extended Data Fig. 4e and Supplementary Table 9).

Early molecular programs of Tex differentiation
Next, we focused on this early stage of exhaustion by comparing D8 
scATAC-seq phenotypes in Arm and Cl13 (Extended Data Fig. 5a). Mem-
ory precursor cells (Tmp) were present at D8 in Arm infection and clus-
tered with an early Texprog population present at D8 in Cl13 infection that 
expresses Tox and Tcf7 (Texprec), but these subsets were relatively infre-
quent compared with the effector populations in both infection models 
and at D5 of Cl13 infection (Extended Data Fig. 5b)14,37. We compared 
the gene expression and chromatin state of Texprec and Tmp subsets at 
D8, which revealed strong exhaustion-induced and interferon-induced 
programs in Texprec (Extended Data Fig. 5c and Supplementary Table 10). 
Similarly, DEGs of effector populations revealed a strong Tex signature 
in the Texeeff subset compared with Teff; Teff showed a bona fide effector 
program (for example, Gzma, Klrd1, Ccr2), whereas Texeeff expressed 
higher levels of exhaustion marker genes (for example, Tnfrsf9, Lag3, 
Pdcd1, Havcr2; Extended Data Fig. 5d and Supplementary Table 11). 
These observations were also supported by the chromatin state pro-
grams of these subsets (Teff: 7,066 OCRs versus Texeeff: 5,211 OCRs) that 
were associated with Teff-specific (ETS, RUNX) and Texeeff-specific (NFAT, 
BATF) TF motifs (Extended Data Fig. 5d). These results support studies 
demonstrating the formation of Texprec early during chronic infection 
that exhibit molecular signatures of exhaustion, distinct from Tmp14,37. 
Moreover, we found that the exhaustion program, including Tox expres-
sion, was present in the Texeeff stage, which might represent an early, 
heterogeneous effector pool with plasticity to seed Tex subsets. We 
tested this concept by adoptively transferring Texeeff, which specifically 
expressed Tnfrsf9 (encoding 4-1BB) (Extended Data Fig. 5e). We trans-
ferred ~400,000 CD45.2+TNFRSF9+CX3CR1−SLAMF6−CD8+ T cells from 
D5 of Cl13 infection to CD45.1+ infection-matched hosts and analyzed 
the phenotypic distribution of the transferred cells. At D21, CD45.2+ 
cells comprised ~3.9% Texprog, ~2.5% TexKLR, ~17% Texint and ~76% Texterm, 
supporting the concept that Texeeff may represent an early stage of Tex 
commitment (Extended Data Fig. 5f).

Differentiation of Texint to TexKLR and Texterm

Tex differentiation downstream of Texprog has been suggested to fol-
low bifurcating differentiation paths, and the RNA velocity analysis 
suggested that Texint may represent the bifurcation point between 
TexKLR and Texterm3,9. We nominated TFs specific for each Tex pheno-
type based on differential RNA expression (Extended Data Fig. 5g) and 
Texterm-specific and TexKLR-specific TF motif enrichments (for example, 
Texterm: NFAT, STAT, NR4A, IRF; and TexKLR: TBX, KLF; Extended Data  
Fig. 5h). Notably, differential analysis of Texterm and TexKLR relative to 
Texint identified only four shared OCRs, suggesting that these two cell 
states are epigenetically divergent. To test whether Texint could rep-
resent a bifurcation point between TexKLR and Texterm, we adoptively 
transferred ~200,000 CD45.2+ Texint cells (CX3CR1+SLAMF6−KLRG1−) 
from Cl13 infection at D21 into CD45.1+ infection-matched hosts. After 10 
days, transferred Texint cells gave rise to both Texterm and TexKLR, although 

Fig. 3 | TCR-based lineage tracing reveals divergent Tex clonal trajectories. 
a, UMAP of scRNA-seq results from the gp33+ and gp33− T cell fractions in 
the spleen at D8 and D21 of Arm and Cl13 infection. UMAP is colored by the 
annotated T cell subsets. b, UMAP of scRNA-seq results of gp33+ T cells colored 
by the size of the detected TCR clones at D8 and D21 in the Arm infection model. 
c, UMAP of scRNA-seq results of gp33+ T cells colored by the size of the detected 
TCR clones at D8 in the Cl13 infection model (left). Same UMAP of gp33+ T cells 
colored by the TCR clone size at the D21 time point in the Cl13 infection model 
(right). d, UMAPs colored by the expression of the indicated gene transcripts 
by scRNA-seq. e, Stacked bar plot of the phenotypic distribution of the top 10 
expanded clones in the gp33+ fraction at D8 and D21 of Arm infection (left) and 

Cl13 infection (right). f, Upset plot depicting the number of expanded clones 
with specific phenotype combinations (clone behaviors). For clarity, the top 
seven most common clone behaviors are shown. Bar plot of the number of 
clones with the indicated phenotypes (bottom left). Violin plot of the clone 
size distribution of the detected clone behaviors (bottom right, P values 
determined by two-sided Wilcoxon rank-sum test). g, Stacked bar plots show 
the top six expanded clones with the indicated clone behaviors. h, UMAPs show 
representative examples of T cell clones with the detected clone behaviors.  
i, Schematic of the phenotypic composition and the potential differentiation 
trajectories of the identified clone behaviors.
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there was relatively more Texterm (Fig. 4e). To further test the potential 
for endogenous Texint to give rise to Texterm, we performed genetic fate 
mapping using Cx3cr1CreERRosa26LSL-tdT mice that can trace the fate of 
Cx3cr1-expressing cells. Short-term fate mapping of Cx3cr1-expressing 
cells (which includes both TexKLR and Texint cells) at D22 in Cl13 demon-
strated that by D25, 6.5% of Texterm cells were labeled with tdTomato, 
supporting the concept that Texint cells can give rise to Texterm (Extended 
Data Fig. 5i). These results support the concept that the Texint stage is 
a bifurcation point of Tex differentiation; however, it is important to 

note two caveats: (1) the genetic fate mapping results do not inform 
the overall contribution of Texint to TexKLR, and it is possible that TexKLR 
also arise from a Texint-independent path, which is also supported by 
our TCR clone analysis; and (2) we cannot rule out the possibility that 
Texterm are generated directly from Texprog in some settings.

Tex clone behaviors are shared across tissues
We next asked whether clonal differentiation patterns are intrinsi-
cally programmed. We first determined whether expanded Tex clones 
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could be found across organs (animal-matched) in Cl13 at D21 (Fig. 5a). 
In spleen-derived, liver-derived, and lung-derived scRNA/TCR-seq 
datasets, we detected expanded T cell clones across all three tissues 
and found that the gp33+ and gp33− fractions showed minimal TCR 
overlap (Fig. 5b and Extended Data Fig. 6a). Importantly, there was 
substantial TCR sharing across the different organs within both gp33+ 
and gp33− fractions (Extended Data Fig. 6a). We identified expanded 
organ-shared T cell clones that had at least five T cells, which consisted 
of at least one cell from each organ. This analysis identified 100 shared 
T cell clones among all organs, 37 clones shared between the lung and 
spleen, and 22 spleen-specific clones (Fig. 5c,d).

Next, we examined the phenotypic distribution of organ-shared 
clones (Fig. 5e,f and Extended Data Fig. 6b,c). First, we focused on 
comparisons between the spleen and lung and found highly conserved 
clone behaviors. Divergent clones in the spleen also maintained Texterm 
and TexKLR phenotypes in the lung (although instead exhibiting the 
Texlung phenotype; 35 of 48 divergent clones detected in both organs; 
Fig. 5e,f and Extended Data Fig. 6b,c). Similarly, the majority of splenic 
TexKLR-biased clones (four of seven clones) and Texterm-biased clones (11 
of 12 clones) maintained their behavior in the lung (Fig. 5e and Extended 
Data Fig. 6c). In particular, we did not observe appreciable interconver-
sion between TexKLR-biased and Texterm-biased clones between these 
two organs (0 of 19 shared clones). Accordingly, quantification of 
TexKLR and Texterm frequencies within individual clones showed a high 
concordance across organs (Fig. 5g). These results demonstrate that 
Tex clones are shared across organs and that clonal differentiation 
behavior is primarily intrinsically programmed.

Depletion of TexKLR clones in the liver 
microenvironment
We next analyzed clonal behavior in the liver, which showed an overall 
enrichment of Texterm compared with other organs (94% Texterm). Thus, 
we expected an enrichment in clonal Texterm frequency; however, this 
could be driven by a depletion of TexKLR-biased clones and/or intercon-
version of TexKLR-biased or divergent clones to Texterm-biased clones. 
We first analyzed the TexKLR-biased clones from the spleen and found 
that only one of these clones was present in the liver (one of seven 
clones), suggesting that TexKLR-biased clones are depleted in the liver 
niche (Extended Data Fig. 6c). Similarly, although divergent clones 
were largely detectable in the liver (42 of 48 clones shared between 
spleen and liver), we again observed a depletion of TexKLR cells, result-
ing in Texterm-biased behavior in the majority of the cases (32 of 42 
shared clones) (Extended Data Fig. 6c). By contrast, the majority of 
Texterm-biased clones remained Texterm-biased in the liver, although 
they were heavily skewed towards Texterm, with relative loss of Texprog 
and Texint (nine of nine clones; Fig. 5e,f and Extended Data Fig. 6c). 
Quantification of frequencies of TexKLR and Texterm phenotypes of shared 
clones in the spleen and liver confirmed the depletion of TexKLR in the 
liver and a skewing of Texterm-biased clones to the Texterm fate (Fig. 5g,h).

To investigate differences in viral antigen levels in the three organ 
niches, we measured LCMV glycoprotein viral transcripts (LCMV-gp) 
and found that LCMV-gp transcripts were higher in the lung and liver 
compared with the spleen (Extended Data Fig. 6d). However, LCMV-gp 

transcripts were the highest in the lung, suggesting that additional 
microenvironment differences may underlie the depletion of TexKLR 
from the liver. As IL-21 has been shown to be a critical cytokine sup-
porting the maintenance of CX3CR1+ Tex cells, we also measured Il21 
transcript levels in each organ9,13. We found substantially lower Il21 
levels in the liver compared with the spleen and lung, suggesting that a 
lack of IL-21 may contribute to TexKLR depletion (Extended Data Fig. 6d).

TCR signaling avidity correlates with clone 
behavior
The difference in clonal expansion between Texterm-biased clones and 
TexKLR-biased clones led us to examine whether Tex differentiation 
trajectories correlated with differences in TCR signaling avidity. We 
first used tetramer binding level as a proxy for TCR avidity and sorted 
gp33− (n = 8,914), gp33-intermediate (gp33int; n = 5,875) and gp33-high 
(gp33high; n = 8,194) splenic CD8+ T cells from Cl13-infected mice at D21 
and performed scRNA/TCR-seq (Fig. 6a and Extended Data Fig. 7a). 
Analysis of TCR sequences identified 313 TCR clonotypes in gp33high 
cells, 1,576 in gp33int cells and 3,803 in gp33− cells (Extended Data 
Fig. 7b). The TCR repertoire showed a small overlap between gp33high 
and gp33− cells (13 shared TCRs) compared with the overlap between 
gp33high and gp33int cells (158 shared TCRs) and between gp33int and 
gp33− cells (306 shared TCRs). TCR repertoire similarity analysis dem-
onstrated that gp33int sorting captured a unique repertoire (Extended 
Data Fig. 7b,c).

Next, we evaluated the clone size distribution of the sorted popu-
lations, which revealed an increase in the percentage of large clones 
(clones with 50–200 or >200 cells) as a function of higher tetramer 
binding (fluorescence), with an accompanying decrease in clonal diver-
sity (Extended Data Fig. 7d). To link unique TCR clones to each gp33− 
tetramer fraction, we compared the overlap of clones between gp33 
fractions and identified 592 unique gp33− clones, 114 unique gp33int 
clones and 88 unique gp33high clones (Fig. 6b,c). Importantly, we found 
phenotypic skewing in the unique clones (Fig. 6c and Extended Data Fig. 
7e,f). Namely, gp33high cells contained ~3.3 times more cells with Texterm 
and Texint phenotypes compared with either gp33− or gp33int cells (39% 
Texterm, 19% Texint in gp33high; 11% Texterm, 6.7% Texint in gp33int; 11% Texterm, 
7.0% Texint in gp33−). By contrast, gp33int cells exhibited phenotypic 
skewing towards the TexKLR phenotype compared with gp33high and 
gp33− cells (27% TexKLR in gp33int; 7.9% TexKLR in gp33high; 13% TexKLR in 
gp33−; Fig. 6d and Extended Data Fig. 7e). We validated differences in 
Tex phenotype distribution and function across gp33 fractions using 
flow cytometry (Extended Data Fig. 7g,h).

To analyze differentiation trajectories, we visualized the top 10 
unique expanded clones in each gp33 tetramer fraction and assessed 
their phenotypic composition. We found that the top clones in the 
gp33− and gp33high fractions were biased towards Texterm or diver-
gent phenotypes (10 of 10 gp33− clones and 10 of 10 gp33high clones; 
expanded gp33− clones probably represent other antigen specificities), 
whereas the largest clones in the gp33int pool exhibited skewing towards 
the TexKLR phenotype (five of 10 gp33int clones; Fig. 6d). We analyzed 
the top seven clone behaviors of the three gp33 fractions and found 
that clones from the gp33− fraction primarily exhibited Texterm-biased 

Fig. 4 | Texint represent a bifurcation point of Tex fate differentiation.  
a, UMAPs of scRNA-seq results of D8 and D21 gp33+ T cells from the Cl13 infection 
model. UMAPs are colored by the annotated T cell subsets and arrows represent 
Tex differentiation fate directions predicted by RNA velocity analysis. b, UMAPs 
of individual Tex clones with the indicated clone behavior. Color gradient (RNA 
velocity pseudotime order) indicates directions of Tex differentiation fates 
determined by RNA velocity analysis. c, Scatter plots of the expression level and 
spliced to unspliced ratio of the indicated gene transcripts in T cells of a divergent 
clone over pseudotime as determined by RNA velocity analysis. Expression 
of spliced and unspliced transcripts was derived from the mean expression 
(first moment) of each gene calculated using k-nearest neighbors to alleviate 

dropout. d, Pseudotime trajectory analyses of three potential Tex differentiation 
paths in scATAC-seq space (top). Heat maps of TF motif deviation scores and 
gene integration scores (integrated scRNA-seq expression values) over the 
pseudotime trajectories (middle). Gene integration scores for Tox expression in 
the three pseudotime trajectories (bottom). e, Schematic of adoptive transfer 
experiments for Texint subset (top). Pretransfer enrichment strategy for Texint 
cells (FSC-A, forward scatter area; middle). Stacked bar plot of the phenotypic 
composition of transferred T cells with all Tex subsets shown or only the CX3CR1+ 
subsets (bottom, n = 5 biologically independent animals). The mean percentage 
of each subset is indicated.
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Fig. 5 | Conserved clonal T cell trajectories across organs and depletion of 
TexKLR in the liver microenvironment. a, UMAP of organ-derived T cells at D21 
in Cl13 infection colored by the annotated T cell subsets. b, UMAPs colored by the 
detected TCR clone sizes in the different organs. c, Scatter plots comparing the 
frequencies of expanded T cell clones from the indicated organs. The correlation 
coefficient (Pearson’s R) and specific and shared clone numbers are indicated 
for each comparison. d, Venn diagram depicting the overlap of expanded 
T cell clones in the gp33+ fraction of the indicated organs. e, Stacked bar plot 
of the phenotypic composition of individual clones across organs. f, UMAPs 
of individual clones with specific clone behaviors across organs. g, Scatter 

plots comparing the fraction of cells in individual clones with TexKLR and Texterm 
phenotypes between the indicated organs. Correlation coefficient calculated 
using Pearson’s R and P value determined using a two-sided t distribution with 
n − 2 degrees of freedom. Shaded area represents 95% confidence interval of 
linear model. h, Violin plot of TexKLR-biased clone frequencies across the organs, 
defined as clones with >50% TexKLR phenotype in the spleen (left). Violin plot 
of Texterm-biased and divergent clone frequencies across the organs (right; n, 
number of scRNA-seq profiles; box center line, median; box limits, upper and 
lower quartiles; box whiskers, 1.5× interquartile range). P values determined by 
two-sided Wilcoxon rank-sum test.
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Fig. 6 | Clonal differentiation of TexKLR and Texterm correlates with TCR 
signaling avidity. a, Sorting strategy to obtain gp33−, gp33int and gp33high CD8+ 
T cell populations from the spleens of LCMV-Cl13-infected animals 21 days 
following infection. b, Venn diagram of the overlap of expanded clones from the 
gp33 T cell fractions. c, UMAPs colored by size of the unique expanded clones 
in the three gp33 T cell fractions. d, Stacked bar plot of the top 10 uniquely 
expanded T cell clones from gp33 T cell fractions colored by T cell phenotype. 
e, Upset plots of phenotype combinations (clone behavior) in unique expanded 
clones from the three gp33 T cell fractions. For clarity, the top seven most 
common clone behaviors are shown. Bar plots show the number of clones 
with the indicated phenotypes. Dominant clone behaviors are indicated at the 
bottom. f, Dose response curves of gp33 peptide stimulation of the indicated 

TCRs in an NFAT-GFP reporter T cell hybridoma cell line. TCRs were selected from 
gp33high (divergent clones) and gp33int (TexKLR-biased clones) fractions. Peptide 
concentration that triggers half of the maximum signaling avidity is indicated 
based on percentage of GFP+ cells (log10 EC50 values). Clone size and phenotype 
distribution of each clone is shown as a stacked bar plot. Bar plot shows 
normalized (to TCRβ expression) percentage of GFP+ cells (normalized, Norm. 
reporter activity) for all TCRs stimulated with a constant peptide concentration 
(100 nM, bottom left). P14 LCMV-specific TCR was used as a positive control 
and OT-1 TCR (ovalbumin peptide specific) as a negative control. The mean 
of two technical replicates are shown of a representative experiment of three 
independent experiments that all showed the same results.
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and TexKLR-biased behaviors, clones from the gp33int fraction were 
heavily enriched for TexKLR-biased differentiation, and clones from 
the gp33high fraction were biased towards Texterm-biased and divergent 
clone behaviors and lacked TexKLR-biased clones (Fig. 6e).

Finally, we tested TCR signaling avidity of unique TCR clono-
types from gp33high and gp33int fractions (top three TCRs derived from 
divergent and TexKLR-biased clones). We computationally assembled 

full-length TCRα and TCRβ sequences from scRNA/TCR-seq data 
(Extended Data Fig. 7i and Supplementary Table 12), cloned and virally 
transduced each TCR into an NFAT-GFP reporter cell line. We also cloned 
the P14 TCR (positive control; high-affinity gp33-specific TCR) and 
an OT-1 TCR recognizing ovalbumin (negative control). We cocul-
tured each T cell hybridoma TCR line with increasing concentrations 
of gp33 peptide-pulsed splenocytes and measured GFP expression 
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colored by the indicated LCMV Cl13 Tex gene signature scores (top). Violin plots 
of LCMV Cl13 Tex gene signature scores across human TIL clusters (bottom, 
box center line, median; box limits, upper and lower quartiles; box whiskers, 
1.5× interquartile range). For each violin plot, n is the number of scRNA-seq 
profiles: Tnaive, n = 6,879; Tem, n = 37,057; Trm, n = 18,348; TexTCF7+, n = 757; TmNME1+, 
n = 593; Texterm, n = 13,024; TemraCX3CR1+, n = 11,702. c, Violin plots of additional 

LCMV Cl13 Tex gene signature scores across human TIL clusters (box center line, 
median; box limits, upper and lower quartiles; box whiskers, 1.5× interquartile 
range). Human TIL clusters are ranked in decreasing order, with the cluster 
with highest enrichment of LCMV Cl13 Tex gene signature score on the left. For 
each violin plot, cell numbers are same as in b. d, Schematic of the relationships 
found between human TIL subsets and mouse LCMV-reactive (gp33+) Tex 
subsets. e, Stacked bar plots of the phenotype distribution of the top 10 human 
expanded TIL clones for the indicated clone behaviors that were detected among 
LCMV-reactive mouse T cells.
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as an indicator of downstream of TCR signaling. These studies sup-
ported two concepts: (1) TCRs from the gp33int and gp33high fractions 
induced GFP expression after coculture with gp33 peptide, confirm-
ing gp33-reactivity; and (2) divergent TCRs from the gp33high frac-
tion exhibited higher signaling avidities (mean half maximal effective 
concentration (EC50), 8.4 nM; positive control P14, 50 nM) compared 
with TexKLR clones from the gp33int fraction (mean EC50, 3,200 nM; Fig. 
6f). These results indicate that divergent/gp33high TCRs exhibit ~400× 
higher signaling avidity than TexKLR/gp33int TCRs, supporting a role for 
TCR signal strength in driving divergent Tex trajectories.

Human TILs show conserved Tex clone behavior
We analyzed tumor-infiltrating lymphocytes (TIL) to investigate 
whether Tex clone behaviors are conserved in human cancer. We reana-
lyzed a dataset of 109,089 CD8+ T cells profiled by scRNA/TCR-seq 
from 47 patients spanning 10 cancer types, which had previously 
been categorized into seven predominant subsets: (1) Tnaive; (2) Tem; (3) 
tissue-resident memory (Trm); (4) TCF7+ exhausted (TexTCF7+); (5) NME1+ 
memory-like (TmNME1+); (6) Texterm; and (7) CX3CR1+ terminally differenti-
ated effector memory (TemraCX3CR1+; Fig. 7a)38. We scored each TIL subset 
for enrichment of gene signatures from Tex subsets in Cl13 infection and 
found a concordance between murine and human T cell types. Namely, 
the murine Texterm gene signature was highly enriched in human Texterm, 
the TexKLR gene signature was highly enriched in human TemraCX3CR1+, 
the Texint and Texeeff gene signatures were enriched in TmNME1+ and the 
Texprog gene signature was enriched in TexTCF7+ (Fig. 7b–d).

Next, we analyzed the phenotypic distribution of expanded TIL 
clones (n = 729) and found that most clones exhibited Texterm-biased 
behavior (n = 483), comprising TexTCF7+, Tem, Trm and Texterm (Extended 
Data Fig. 8a,b). In addition, we detected TemraCX3CR1+-biased clones 
(n = 225), which primarily comprised cells with a TexKLR-like pheno-
type (Supplementary Fig. 8a,b). Finally, we also observed TIL clones 
with divergent behavior, comprising Texterm and TemraCX3CR1+ (n = 24 
clones; Extended Data Fig. 8a,b). Analyzing the top 10 clones with each 
behavior demonstrated that apart from a few large TemraCX3CR1+-biased 
clones, clone sizes were similar between Texterm and TemraCX3CR1+ clones 
and smaller in divergent clones (Fig. 7e). Taken together, these results 
demonstrate similarities in gene expression signatures of human CD8+ 
TIL and LCMV-reactive murine Tex subsets and show that human TIL 
clones can exhibit divergent, TexKLR-biased and Texterm-biased differen-
tiation paths analogous to those observed in Cl13 infection.

Discussion
Here we report a single-cell multiomic atlas of T cell exhaustion dur-
ing chronic viral infection, which reveals new Tex subsets and their 
molecular programs, identifies multiple differentiation trajectories 
of Tex clones and nominates TCR signal strength as a driver of clonal 
behavior. Previous studies have described multiple Tex subsets with 
distinct phenotypic and functional traits, including CX3CR1+ transi-
tory exhausted cells8,9,13. Here, we show that this CX3CR1+ population 
encompasses two Tex subsets with distinct functionalities: (1) Texint, 
which represent a bifurcation point in Tex differentiation to either 
Texterm or TexKLR; and (2) TexKLR with superior functionality and prolifera-
tive capacity compared with Texint and Texterm. This heterogeneity may 
help to explain previous discrepancies in understanding the lineage 
potential and differentiation path of CX3CR1+ Tex cells8,9,15. Notably, 
the development of TexKLR occurs via two distinct clonal differentia-
tion paths (TexKLR-biased and divergent clones), and future studies are 
needed to understand whether clonally unrelated TexKLR cells possess 
distinct functional characteristics.

Given the stable epigenetic state of Tex22,39, it is important to under-
stand the stage at which the Tex epigenetic program is initiated. Previ-
ous studies have demonstrated that early TCF1+ Texprec cells possess the 
epigenetic signature of Tex and can seed additional Tex subsets14,37. 
Here, we find that the Tex program is initiated at an earlier stage in 

Texeeff. scATAC-seq analysis and adoptive transfer experiments sug-
gest that this fate decision may be driven by NFAT and BATF, followed 
by subsequent activation of BACH2 and TCF1 to give rise to Texprec/
Texprog14,18. These findings, coupled with early clonal expansion of Texeeff, 
support a model in which the Texprec and Texprog pool originates from 
Texeeff. However, it is important to note that our results do not exclude 
the possibility that Texprog can also differentiate to Texeeff. Future line-
age tracing experiments will further clarify the relationship between 
these early Tex cell types.

Downstream of Texprog, the differentiation trajectory of Tex has 
largely been thought to follow a linear path, although some studies 
have suggested a bifurcating path3,9. Our data identify two late-stage 
Tex types (TexKLR and Texterm) and show that individual clones can 
follow three differentiation trajectories resulting in Texterm-biased, 
TexKLR-biased or divergent fates, comprising both cell types. Further-
more, we find that the differentiation trajectory of Tex clones corre-
lates with TCR signaling avidity and thus seems to be programmed by 
the TCR and conserved across different tissues. However, additional 
mechanisms to induce TCR signal strength variation—for example, via 
inhibitory receptor signaling or access to antigens, cytokines or other 
factors—may also promote the development of the TexKLR phenotype. 
Importantly, TexKLR-biased clones were depleted in the liver microen-
vironment, suggesting that these clones are unable to persist in the 
liver, whereas Texterm were able to persist. Given the high viral load and 
inflammatory microenvironment of the liver during infection, these 
results suggest that the Texterm phenotype may improve Tex persistence 
and preserve antiviral effector function in specific organ systems40.

Finally, these findings may have several implications for cancer. 
First, several ongoing therapeutic strategies aim to reverse exhaus-
tion; however, our results suggest that Texterm may be specifically 
adapted to survive in high-antigen niches4,16,17,19–21,41. Whether the pro-
survival aspects of T cell exhaustion can be maintained while rein-
vigorating effector function will require further study. Second, our 
findings reinforce the notion that TCR signal strength can direct the 
fate of T cells42,43. Thus, the generation of TCR-based cellular therapies 
should assess the phenotypic outcomes of TCR activation in addition 
to antigen recognition. Finally, the observation that a polyclonal T cell 
response to chronic antigen balances persistence, effector and poten-
tial memory functions via the development of two Tex states suggests 
that future cellular therapies may wish to establish divergent pheno-
types44. Indeed, a recent study identified a natural killer (NK)-cell-like 
signature in exhausted human chimeric antigen receptor (CAR)-T cells, 
which resembles the TexKLR signature, suggesting that this cell type may 
be present in adoptive cell therapy settings as well45. Manipulation of 
these features and gene regulatory programs of the Tex state may pro-
vide important avenues for improved T cell-based immunotherapies.
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Methods
Mice and infection
Male C57BL/6J (CD45.2) and B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) mice 
were purchased from Charles River Laboratories or The Jackson Labo-
ratories. All mice were housed in a specific-pathogen-free facility and 
were used for infection at 8–12 weeks of age. Mice were housed with a 
12 h light/12 h dark cycle, and the temperature was kept between 18 and 
24 °C with 50% humidity. LCMV infection was performed essentially as 
described previously46. All experiments were performed according to 
protocols approved by the Institutional Animal Care and Use Commit-
tees of Stanford University (protocol number: 33814) and Washington 
University (protocol number: 21–0244).

Tissue preparation
Single-cell suspensions of the different organs were prepared by manual 
dissociation. Organs were minced and gently pushed through a 40-μm 
strainer. Spleen single-cell suspensions were spun, and red blood 
cells were lysed with ACK-lysis buffer by resuspending the cell pellet 
followed by 2 min incubation. Cells were then washed with ice-cold 
phosphate-buffered saline (PBS) and stained for sorting in FACS buffer 
(PBS, 0.1% bovine serum albumin (BSA), 2 mM EDTA, 5% fetal bovine 
serum). For the lung and liver single-cell suspensions, organs were cut 
into small pieces and gently pushed through a 40-μm-diameter strainer. 
Single-cell suspensions were then layered on top of Ficoll-Paque Plus 
(Cytiva) and centrifuged according to the manufacturer’s recom-
mendations. The lymphocyte fraction was collected and washed with 
ice-cold PBS and then stained for sorting.

RNA isolation and viral transcript determination
Approximately 10 mg of spleen, liver and lung pieces were cut and 
tissues were flash frozen on dry ice, followed by the addition of 750 μl 
TRIzol, and smashed with a plastic pestle, before being further homog-
enized with a 25-gauge needle. From this tissue homogenate, 375 μl was 
used and further diluted with 125 μl TRIzol. This mixture was mixed 
with 100 μl chloroform and spun at maximum speed at 4 °C. RNA was 
precipitated from the aqueous phase with isopropanol, followed by 
centrifugation and 70% ethanol washing of the RNA pellet. Then, 500 ng 
RNA was used for reverse transcription (Qscript), and quantitative 
real-time PCR (SYBR Green) was performed with the following prim-
ers. LCMV-gp forward primer: CATTCACCTGGACTTTGTCAGACTC; 
LCMV-gp reverse primer: GCAACTGCTGTGTTCCCGAAAC; Il21 forward 
primer: TCATCATTGACCTCGTGGCCC; Il21 reverse primer: ATCG-
TACTTCTCCACTTGCAATCCC. Gene expression was normalized to the 
expression of the Hprt housekeeping gene with the following primers. 
Hprt forward primer: AGGTTGCAAGCTTGCTGGT; Hprt reverse primer: 
TGAAGTACTCATTATAGTCAAGGGCA.

Staining T cells for sorting and analysis
Single-cell suspensions were stained with the following antibod-
ies: CD8b (BioLegend catalog number 126610; conjugated with 
PerCP-Cy5.5, dilution 1:800), CD4 (BioLegend catalog number 100414; 
conjugated with APC-Cy7, dilution 1:400), PD-1 (BioLegend catalog 
number 135216; conjugated with PE-Cy7, dilution 1:200), CX3CR1 (Bio-
Legend catalog number 149008; conjugated with APC, dilution 1:400), 
SLAMF6 (BD Biosciences catalog number 745250; conjugated with 
BV605, dilution 1:100), CXCR6 (BioLegend catalog number 151119; 
conjugated with PE-Cy7 or APC-Cy7, dilution 1:200), TNFRSF9 (Bio-
Legend catalog number 106105; conjugated with PE, dilution 1:200), 
KLRG1 (BioLegend catalog number 138413; conjugated with BV421, 
dilution 1:200) and the class I tetramer, H-2Db LCMV gp33–41 (KAVY-
NFATC) (PE conjugated, dilution 1:100). Cells were stained with the 
tetramer for 20 min at 4 °C followed by staining with the combination 
of the other antibodies for 20 min. Cells were washed in FACS buffer 
and stained with LIVE/DEAD Fixable Aqua dead cell stain for 20 min in 
PBS. Intracellular staining was performed with the Foxp3 intracellular 

staining kit (eBioscience) according to the manufacturer’s protocol 
with the following antibodies: MKI67 (BioLegend catalog number 
652410; conjugated with FITC or PerCP-Cy5.5, dilution 1:200), IFNG 
(BioLegend catalog number 505806; conjugated with FITC, dilution 
1:200) and LAMP-1 (BioLegend catalog number 121624; conjugated 
with PE-Dazzle 594, dilution 1:200). Flow cytometry analysis and cell 
sorting were performed with a BD FACSAria III (BD Biosciences) using 
BD FACSDiva Software 6.0 (BD Biosciences). Flow cytometry data were 
analyzed with FlowJo v.10 (FlowJo; BD Biosciences).

Adoptive transfers
Adoptive transfer experiments were performed by transferring Texeeff 
(CD8+ TNFRSF9+, SLAMF6−, CX3CR1−) into an infection-matched CD45.1 
host. Approximately 4 × 105 cells were transferred from D5 following 
Cl13 infection into infection-matched hosts (n = 3). Transferred cells 
(CD45.2+) were analyzed at D21 following Cl13 infection. Owing to 
this stringent sorting strategy that excludes Texint, TexKLR and Texprog 
from the transferred cell pool, the Texeeff population comprised 8.7% 
of the total CD8+ CX3CR1− SLAMF6− fraction at D5, which represented 
a smaller fraction of total Texeeff than would be expected from the 
scRNA-seq results (52.36% of the gp33+ fraction was Texeeff). This may 
have also been in part due to inaccuracies in scRNA-seq cluster-based 
cell classification. Texint (CD8+, CX3CR1+, KLRG1−, SLAMF6−) were 
isolated from D21 following Cl13 infection and transferred into 
infection-matched CD45.1 hosts (n = 5). Approximately 2 × 105 cells 
were transferred from D21 and transferred; CD45.2+ Tex subsets were 
analyzed at D31. Tex subsets were identified by the following markers. 
Texint: CX3CR1+, SLAMF6−, KLRG1−; Texprog: SLAMF6+, CX3CR1−; TexKLR: 
CX3CR1+, KLRG1+, SLAMF6−, Texterm: CX3CR1−, SLAMF6−. We emphasize 
that whereas both Texeeff and Texterm were defined as CX3CR1− SLAMF6−, 
the double-negative fraction at D21 after Cl13 infection contained ~1% 
Texeeff cells based on scRNA-seq (Extended Data Fig. 1b, scRNA-seq 
UMAP) 1; therefore, no additional gating for Texterm cells was performed 
in the Texint transfer experiment. Flow cytometry analysis and cell sort-
ing were performed with a BD FACSAria III (BD Biosciences) using BD 
FACSDiva Software 6.0 (BD Biosciences). Flow cytometry data were 
analyzed with FlowJo v.10 (FlowJo; BD Biosciences).

scATAC-seq sample and library generation
scATAC-seq experiments were performed on the 10x Chromium 
platform as described previously47. Briefly, after sorting, T cells were 
washed with PBS with 0.04% BSA and then subjected to nuclei isolation 
according to the protocol of the manufacturer. Nuclei were counted, 
and on average ~10,000 nuclei were submitted for tagmentation. After 
tagmentation, nuclei were loaded for capture using the 10x Chromium 
controller. After gel emulsion generation, linear amplification was 
performed, followed by DNA purification according to the manufac-
turer’s protocol. The resulting DNA was used for library construction as 
described on the website of the manufacturer. Libraries were quantified 
with an Agilent Bioanalyzer and sequenced on an Illumina NovaSeq S4 
sequencer, using the following setup: 50 bp read 1N, 8 bp i7 index, 16 bp 
i5 index and 50 bp read 2N. In this reaction, 1N and 2N refer to the DNA 
insert sequencing, whereas i5 and i7 sequencing identify the individual 
barcodes of single cells.

scRNA-seq library preparation
scRNA-seq libraries were prepared using a 10× 5′ Single Cell Immune 
Profiling Solution Kit (v.1.1 Chemistry) according to the manufacturer’s 
instructions. Briefly, FACS-sorted cells were washed once with PBS and 
0.04% BSA, and on average 10,000 cells were submitted for capture 
using the 10× Chromium controller. Following reverse transcription and 
cell barcoding in droplets, emulsions were broken, and complementary 
DNA (cDNA) was purified using Dynabeads MyOne SILANE followed 
by PCR amplification (98 °C for 45 s; 14 cycles of 98 °C for 20 s, 67 °C 
for 30 s, 72 °C for 1 min; 72 °C for 1 min). For gene expression library 
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construction, 50 ng of amplified cDNA was fragmented, end-repaired 
and double-sided size-selected with SPRIselect beads. Purified DNA was 
subjected to PCR amplification with sample indexing primers (98 °C 
for 45 s; 14 cycles of 98 °C for 20 s, 54 °C for 30 s, 72 °C for 20 s; 72 °C for 
1 min). Amplified DNA was double-sided size-selected with SPRIselect 
beads and quantified using an Agilent Bioanalyzer. scRNA-seq librar-
ies were sequenced on an Illumina NovaSeq S4 sequencer using the 
following read configuration: 26 bp Read1, 8 bp i7 Index, 91 bp Read2.

scTCR library generation
Single-cell TCR (scTCR) libraries were prepared with a 10× Chromium 
Single Cell V(D)J Enrichment Kit for mouse T cells (v.1.1 Chemistry) 
following the manufacturer’s protocol. Briefly, after cDNA amplifi-
cation and clean-up, 2 μl of cDNA was used for target enrichment. 
The first target enrichment was performed with specific primers, 
followed by a SPRIselect bead clean-up. The second target enrich-
ment was performed with specific primers, followed by double-sided 
size-selection with SPRIselect beads. After the two target enrichment 
steps, the quality of the product was assessed with an Agilent Bio-
analyzer. Amplified product was then subjected for fragmentation, 
followed by end-repair and A-tailing. End-repaired product was then 
subjected to adapter ligation, followed by SPRIselect bead purification. 
Product was amplified and barcoded with adapter-specific primers, 
and the quality of the resulting libraries was determined with an Agi-
lent Bioanalyzer. scTCR-seq libraries were sequenced on an Illumina 
NovaSeq S4 sequencer using the following read configuration: 26 bp 
Read1, 8 bp i7 Index, 91 bp Read2.

In vitro assessment of TCR signaling avidity
Sequences of CDR3 variable regions and VDJ gene annotations of paired 
Tcra/Tcrb expressed in gp33high and gp33int cells were extracted from 
the single-cell sequencing data48. Full-length TCR sequences were 
assembled at www.imgt.org and confirmed using TRUST4. The P14 
TCR sequence was obtained from GenBank (accession numbers: X06772 
and X06771). Each Vb-TRBC2-(GSG linker)-T2A-Va sequence was syn-
thesized with 5′ linker (5′-AGGCGCCGGAATTAGATCTCTCGAGCCACC
-3′) and 3′ linker (5′-GCAGAGGGTGCTGTCCTGAGACCGAGGATC-3′) 
sequences (Twist Biosciences) and cloned into XhoI and BamHI sites of 
the MSCV-based retroviral plasmid MigCaRCh (a gift from C.-S. Hsieh, 
Washington University), which contains a TRAC IRES mCherry sequence 
downstream of the cloning sites, using an NEB HiFi assembly kit. Each 
paired Tcra/Tcrb was retrovirally expressed in 58a–b– NFAT-GFP reporter 
cells49,50 (Thy1.1+, a gift from K. Murphy, Washington University) that had 
been engineered to express Cd8a/b and sorted based on expression of 
CD8a/b, mCherry and TCRb. Then, 2.5 × 104 cells of each hybridoma were 
stimulated with 5 × 105 irradiated C57BL/6 splenocytes (3,000 rad) in the 
presence of varying concentrations of LCMV-gp33 peptide (Genscript) 
for 40 h in RPMI 1640 media supplemented with 10% fetal bovine serum 
and 50 μM 2-mercaptoethanol, and frequencies of GFP+ cells in Thy1.1+ 
cells were measured by flow cytometry using an Attune flow cytometer.

Cx3cr1-creER-mediated fate mapping
Lineage tracing of Cx3cr1-expressing cells was performed as described 
previously13. Briefly, Cx3cr1-creERT2 mice were crossed to Rosa2
6-CAG-loxP-stop-loxP-tdTomato reporter mice and infected with LCMV 
Cl13. Infected mice were treated with 1 mg tamoxifen (Sigma) dissolved 
in corn oil (Sigma) by oral gavage 22 days postinfection, followed by 
analysis of tdTomato expression in LCMV-gp33-specific CD8 T cells 25 
days postinfection.

scATAC-seq data processing and analysis
scATAC-seq datasets were processed as described previously51. 
Briefly, reads were filtered, trimmed and aligned to the mm10 refer-
ence genome using the 10x Genomics cellranger-atac count pipeline 
(v.1.2.0).

Processed fragment files were loaded into ArchR (v.1.0.1) for addi-
tional processing and analysis. All functions used default parameters 
unless otherwise specified. Cells were filtered during Arrow file genera-
tion using the ArchR createArrowFiles function to remove cells with 
an enrichment of Tn5 insertions in TSS (TSS enrichment) of less than 
4 or less than 1,000 unique fragments. Doublets were identified using 
the ArchR addDoubletScores function, and predicted doublets were 
removed using the filterDoublets function. Dimensionality reduction 
was performed using iterative latent semantic indexing using the ArchR 
addIterativeLSI function. After initial clustering and UMAP projection, 
we excluded a small cluster of non-T cells. Cell clustering was per-
formed using the ArchR addClusters function on IterativeLSI reduced 
dimensions 1:10 and a resolution of 0.4 (reducedDims = ‘IterativeLSI’, 
dimsToUse = 1:10, resolution = 0.4). The same dimensions were used 
for single-cell embedding by UMAP using the ArchR addUMAP function 
using IterativeLSI reduced dimensions 1:10 and a minimum distance 
of 0.1 (reducedDims = ‘IterativeLSI’, dimsToUse = 1:10, minDist = 0.1). 
Cell clustering and UMAP projection for Chronic LCMV (D8 and D21; 
Fig. 3) and D8 (chronic and acute; Extended Data Fig. 5a) subsets were 
performed as described above with the following modifications: dim-
sToUse = NULL, resolution = 0.2 and minDist = 0.4.

GeneScore matrices were computed by summing Tn5 insertions in 
the gene promoter and gene body during Arrow file generation using 
the ArchR createArrowFiles function51. Gene score imputation was per-
formed with Magic using the ArchR addImputeWeights function52. After 
clustering of the cells, peaks were called by MACS2 on pseudoreplicates 
sampled from each cluster to obtain a reproducible peak set retaining 
cell-type-specific peaks using the ArchR addReproduciblePeakSet 
function. Peak coaccessibility and Peak2Gene linkages were com-
puted using the ArchR addCoAccessibility and addPeak2GeneLinks 
functions. TF motif deviations were computed with chromVar using 
the ArchR addDeviationsMatrix function25. Pseudobulk tracks for 
indicated groups of cells were plotted using the ArchR plotBrowser-
Track function with default normalization method based on reads in 
TSS (‘ReadsInTSS’). Differential peak testing was performed using the 
ArchR getMarkerFeatures function with testMethod = ‘wilcoxon’ and 
bias = c(‘TSSEnrichment’, ‘log10(nFrags)’). TF motif enrichment in 
differential peaks was performed using the ArchR peakAnnoEnrich-
ment function. Trajectory analysis was performed using the ArchR 
addTrajectory and plotTrajectory functions.

scRNA-seq and TCR-seq computational methods
scRNA-seq reads were aligned to the mm10 reference genome and 
quantified using cellranger count (10x Genomics, v.3.1.0). Filtered 
gene-barcode matrices that contained only barcodes with unique 
molecular identifier counts that passed the threshold for cell detection 
were used for further analysis. scTCR reads were aligned to the mm10 
reference genome, and consensus TCR annotation was performed 
using cellranger vdj (10x Genomics, v.3.1.0). TCR annotation was per-
formed using the 10x cellranger vdj pipeline as described.

Additional analysis was performed in R (v.4.0.3) using Seurat 
(v.4.0.1) with default function parameters unless otherwise noted53. 
Doublets were predicted using DoubletFinder (v.2.0.3)54. Cell types 
were predicted using SingleR (v.1.4.1) based on mouse bulk RNA-seq 
reference data (MouseRNAseqData) from celldex (v.1.0.0)55. Cells with 
fewer than 200 genes detected, greater than 5% mitochondrial RNA 
content or predicted doublets from DoubletFinder and cells annotated 
as non-T and non-NK cells by SingleR were excluded from analysis. We 
predicted cell cycle phase based on previously defined gene sets using 
the CellCycleScoring function56. We then split cells by experimental 
batch and cell cycle (noncycling or G1 versus cycling or G2M/S) into 
four datasets using Seurat SplitObject and performed batch correc-
tion using the Seurat reciprocal principal component analysis (PCA) 
workflow. First, we normalized and identified variable features for 
each dataset independently using the Seurat NormalizeData and 
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FindVariableFeatures. Then, we selected variable features across data-
sets using Seurat SelectIntegrationFeatures. We excluded variable 
TCR (^Tr.v) genes, variable Ig (^Ig.v) genes, cell cycle genes (used for 
cell cycle scoring) and mitochondrial genes (^mt-) from integration 
features used for downstream analysis. We then scaled data and ran 
PCA on each dataset independently using these features with Seurat 
ScaleData and RunPCA. We identified integration anchors using Seurat 
FindIntegrationAnchors using noncycling datasets as reference data-
sets and rpca for dimensionality reduction. We integrated all datasets 
using Seurat IntegrateData using dims = 1:50. Integrated data were used 
for data scaling with ScaleData and PCA dimensionality reduction with 
RunPCA. After initial clustering, we noted three small clusters repre-
senting 7% of total cells that had low numbers of genes detected and 
high mitochondrial RNA content; these were excluded from further 
analysis. Clusters were identified using shared-nearest-neighbor-based 
clustering based on the first 10 PCs with resolution = 0.45. The same 
principal components were used to generate the UMAP projections, 
which were generated with a minimum distance of 0.1. Cell clustering 
and UMAP projection for chronic D21 T cells (all tissues; Figs. 2 and 5), 
spleen-derived T cells (chronic and acute, D8 and D21; Figs. 3, 4 and 6), 
D8 T cells (spleen, chronic and acute, Extended Data Fig. 5), chronic 
including D5 (spleen, chronic, D5, D8 and D21, Extended Data Fig. 5) 
were performed as described above with the following modifications:

chronic D21 T cells: dims = 1:10, resolution = 0.2, min.dist = 0.1;
spleen-derived T cells: dims = 1:8, k.param = 50, resolution = 0.5, 

min.dist = 0.1;
D8 T cells: dims = 1:12, k.param = 40, resolution = 0.28, min.

dist = 0.2;
chronic including D5: dims = 1:6, resolution = 0.22, min.dist = 0.01, 

spread = 1.5.
Expression of selected genes was plotted using log-normalized 

gene expression values based on original RNA count data before data 
integration. Marker genes were identified using Seurat FindAllMark-
ers using a cutoff of p_val_adj < 0.01. Differential gene expression 
analysis was performed using Seurat FindMarkers using cutoffs of 
p_val_adj < 0.05 and abs(avg_log2 fold change (FC)) > 0.25. Gene mod-
ule scoring was performed using Seurat AddModuleScore. TCR clone 
behaviors were visualized using UpSetR (v.1.4.0). Null distribution 
of TCR clone behaviors was determined by randomly shuffling TCR 
clonotype and scRNA phenotype and generating a distribution of TCR 
clone phenotype combinations (n = 50 iterations). The Morisita–Horn 
index for quantifying TCR overlap was calculated using the mh function 
from the R package divo (v.1.0.1).

scRNA velocity analysis
Spliced and unspliced transcript counts were computed using velocyto 
run10x (v.0.17.17) on scRNA-seq cellranger outputs35. The resulting loom 
files were used for subsequent RNA velocity analysis and visualization 
with dynamo (v.1.0.0). Preprocessing was performed using dynamo.
pp.recipe_monocle. RNA velocity was computed using dynamo.
tl.dynamics with model = ‘stochastic’. Cell transition probabilities were 
computed using dynamo.tl.cell_velocities with method = ‘pearson’ 
and other_kernels_dict = {‘transform’: ‘sqrt’}. RNA velocity was visual-
ized using dynamo.pl.streamline_plot. Pseudotime was estimated 
using single-cell potential (umap_ddhodge_potential) based on the 
vector field topology computed using dynamo.vf.VectorField with 
basis = ‘umap’ and dynamo.ext.ddhodge with basis = ’umap’. A caveat 
of these analyses is that highly distinct transcriptional cell states (for 
example, Texterm or Texprog; similarly, in Arm infection, Teff, Tem or Tnaive), 
as well as local minima and/or maxima neighboring distinct cell states, 
can drive the velocity signal, influencing the ‘start’ or ‘end’ points of 
the analysis. Further, RNA velocity pseudotime is calculated from the 
potential of the RNA velocity field and summarizes the direction and 
magnitude of the dominant local trajectories in UMAP space, rather 
than nominating terminal differentiation states.

Human scRNA-seq and TCR-seq analysis
Processed scRNA-seq and TCR-seq data from human tumor-infiltrating 
T cells were downloaded from zenodo38. For further analysis, we used 
scRNA-seq expression data from the R object data/expression/CD8/
integration/CD8.thisStudy_10X.seu.rds and scTCR-seq data from the R 
object data/tcr/byCell/tcr.zhangLab.comb.flt.rds. Additional analysis 
was performed using Seurat (v.4.0.1). Phenotypic clusters were defined 
using the provided meta.cluster.simplified assignment. Enrichment of 
mouse LCMV gene signatures was calculated using the Seurat AddMod-
uleScore. TCR clones were defined using the provided cloneID annota-
tion. TCR clone behaviors for tumor-infiltrating T cells (loc = ‘T’) were 
visualized using UpSetR (v.1.4.0). For UMAP visualization of single 
cells, provided normalized expression data were batch-corrected 
using RunHarmony in harmony based on the ‘patient’ variable (v.1.0)57. 
The first 10 harmonized embeddings were used to generate the UMAP 
projections, which were generated with a minimum distance of 0.1.

Statistics and reproducibility
Statistical analyses were performed in R or GraphPad Prism. Gene 
expression measurements by quantitative PCR were presented as 
mean ± s.d. In the bar graphs, significant changes were determined by 
two-tailed, unpaired t-test at P < 0.05. The exact replicate numbers are 
indicated in the figure legends for each experiment. Differential gene 
expression analysis was performed using a cutoff of adjusted P < 0.05 
and absolute (average log2 FC) > 0.25. Statistical parameters are also 
reported in the figure legends. Data distribution was assumed to be 
normal, but this was not formally tested. No statistical test was used 
to predetermine sample size. No data were excluded from the analysis. 
The experiments were not randomized. The investigators were not 
blind to allocation during experiments or outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All sequencing data generated 
in this study are available under GEO accession GSE188670.

Code availability
Custom code used in this study is available at https://github.com/
katieyost/LCMV-code-2022.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Sorting strategy and quality controls for scATAC-seq 
data. (a) Sorting strategy to obtain antigen specific gp33+ and gp33− CD8+ T cells 
from different organs. (b) Sorting strategy to obtain the main Tex subsets (left). 
UMAPs of scRNA-seq and scATAC-seq results, originating from the indicated Tex 
subsets. (c) Bar plot of cell counts from the scRNA-seq samples (top). Stacked 
bar plot of the phenotypic composition of the indicated scRNA-seq samples 
(bottom). (d) Quality control of scATAC-seq data. Histogram shows normalized 
read enrichment on the transcription start sites (TSS) of genes from the indicated 

samples (top). Density plots depict the cells that passed the TSS enrichment and 
Log10 unique fragment count threshold. Median TSS enrichment (MTE) is also 
indicated. (e) Density plots of scATAC-seq data from the main Tex populations 
depicting the same quality controls as panel (c). (f ) UMAP of scATAC-seq 
data colored by integrated scRNA-seq cluster labels. (g) Heat map of TF motif 
enrichment at the specific open chromatin regions (OCRs) of the annotated T cell 
populations (p-values determined by hypergeometric enrichment and adjusted 
using the Bonferroni correction method).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Characterization of Texint and TexKLR subsets and 
organ-specific exhaustion signatures. (a) Ingenuity pathway analyses of the 
differentially expressed genes identifying enriched biological pathways between 
the two subsets (Texint versus TexKLR). Top 6 hits are shown. (b) Representative 
flow cytometry plots that quantify CXCR6 expression in Texterm, Texint and Texprog. 
Barplots summarize the quantification across three biological replicates. 
Significant changes were determined by two tailed, unpaired t-test at p < 0.05 
(n = 3). Shown are means with SDs. (c) Representative flow cytometry plots 
show the MKI67+ fractions of the indicated Tex subsets. Boxplot depicts the 
quantification of MKI67+ Tex subsets. Significant changes were determined by 
two tailed, unpaired t-test at p < 0.05 (n = 5 biologically independent animals). 
Box center line, mean; limits, upper and lower quartiles; whiskers, minimum and 
maximum values. (d) Volcano plots of differentially expressed genes comparing 

Texterm populations from different organs (log2 FC > 0.25, Bonferroni adjusted 
p-value < 0.05, p-values determined by two-sided Wilcoxon Rank Sum test). 
Ingenuity pathway analysis results on the differentially expressed gene groups 
(bottom). Top 3 hits are shown. (e) Violin plots of the Cell Cycle score of the 
indicated T cell populations across organs (n = number of scRNA-seq profiles, 
box center line, median; box limits, upper and lower quartiles; box whiskers, 
1.5× interquartile range). P-values determined by two-sided Wilcoxon Rank Sum 
test relative to overall distribution of single cells from the indicated Tex subsets 
across all organs. (f ) Representative flow cytometry of the MKI67+ fraction of 
Texterm subsets in the indicated organs. Bar plot summarizes MKI67+ fractions 
across organs. Significant changes were determined by two tailed, unpaired t-test 
at p < 0.05 (n = 3 biologically independent animals). Shown are means with SDs.
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Extended Data Fig. 3 | Analysis of highly-expanded T cell clones in Arm and 
Cl13 infection. (a) UMAPs of highly expanded clones from the Arm infection 
model at the indicated time points. (b) UMAPs of highly expanded clones of 
the Cl13 infection model at the indicated time points. (c) Stacked bar plot of 
the phenotypic composition of individual T cell clones with a bias towards the 

TexKLR fate that also contain some cells with the Texterm phenotype. Top 6 clones 
are shown. (d) Upset plot of the phenotype combinations of the observed and 
shuffled TCR clones. Bar represents the mean and error bars represent standard 
deviation for 50 randomized TCR shuffling iterations performed to obtain the 
shuffled distribution.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | RNA velocity analysis of a divergent clone and 
regulatory programs of exhaustion. (a) Heat maps depict the gene expression 
program of a gp33–reactive divergent clone, differentiating from the Texint 
stage into either Texterm or TexKLR fates (left). Pseudotime order (direction of 
differentiation) was determined by RNA velocity analysis and is presented on 
a UMAP (right). (b) UMAPs of gp33+ CD8+ T cells from Arm infection at D8 and 
D21 and gp33− at D21. Color gradient (RNA velocity pseudotime order) indicates 
directions of T cell differentiation fates determined by RNA velocity analysis. 
(c) UMAP of scATAC-seq results of D8 and D21 gp33+ and gp33−T cells from Cl13 
infection. UMAP is colored by the annotated T cell subsets. Small UMAPs (right) 
show T cells that originate from the indicated gp33 fractions and timepoints. 
(d) Heat map of Peak score values at the unique open chromatin regions 
(OCRs) of the T cell subsets determined by scATAC-seq with a list of annotated 

putative target genes based on proximity (left, log2 FC > 1, FDR < 0.05, p-values 
determined by two-sided Wilcoxon Rank Sum test and adjusted using the 
Benjamini & Hochberg procedure to obtain FDRs). Heat map of motif enrichment 
results at the unique OCR sets of the annotated T cell subsets (right, p-values 
determined by hypergeometric enrichment and adjusted using the Bonferroni 
correction method). (e) Upset plot of differentially accessible OCRs relative to 
Tnaive at the Tox gene locus and their overlap among the different Tex subsets 
(log2 FC > 1, FDR < 0.01, p-values determined by two-sided Wilcoxon Rank Sum 
test and adjusted using the Benjamini & Hochberg procedure to obtain FDRs). 
Violin plot shows the gene expression level of Tox in the identified Tex subsets. 
Box center line, median; box limits, upper and lower quartiles; box whiskers, 1.5× 
interquartile range.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Molecular programs of early effector- and progenitor-
exhausted T cells and fate mapping experiments. (a) UMAPs of scATAC-seq 
(left) and scRNA-seq (right) results from the infection models. Small UMAPs are 
colored by sample of origin (bottom). (b) Stacked bar plot depicts the phenotypic 
distribution of gp33+ CD8 T cells from scRNA-seq. (c) Volcano plot of differentially 
expressed genes (DEGs) between memory precursor T cells (Tmp) from Arm and 
the precursor exhausted T cells (Texprec) from Cl13 infections (top left). Differential 
gene expression analyses were performed as follows: log2 FC > 0.25, Bonferroni 
adjusted p-value < 0.05, p-values determined by two-sided Wilcoxon Rank Sum 
test. Ingenuity pathway analyses of the Tmp andTexprec specific gene sets. Volcano 
plot of the differential open chromatin regions (OCRs) of the Tmp and Texprec 
populations (top right). Differential OCR analyses were performed as follows: log2 
FC > 1, FDR < 0.1, p-values determined by two-sided Wilcoxon Rank Sum test and 
adjusted using the Benjamini & Hochberg procedure to obtain FDRs. Enriched 
transcription factor (TF) motifs in specific OCRs of Tmp andTexprec subsets are 
shown (p-values determined by hypergeometric enrichment and adjusted using 
the Bonferroni correction method). (d) DEGs between the D8 effector T cells 
(Teff) from Arm and early effector Tex cells (Texeeff) from Cl13 infections (top left). 
Same statistical approach was used as in (c). Ingenuity pathway analyses of the Teff 

and Texeeff specific gene sets (bottom left). Volcano plot depicts the differentially 
accessible OCRs of Teff and Texeeff populations (right). Same statistical approach 
was used as in (c). Enriched TF motifs in Teff and Texeeff specific OCR sets (p-values 
determined by hypergeometric enrichment and adjusted using the Bonferroni 
correction method). (e) Expression of the indicated genes profiled by scRNA-seq. 
Box center line, mean; limits, upper and lower quartiles; whiskers, minimum and 
maximum values. (f ) Schematic of the Texeeff adoptive transfer experiment with 
pre-transfer sorting strategy (top). Representative flow cytometry plots show the 
analysis of the phenotypic content of recovered T cells. Stacked bar plots show 
the phenotypic distribution from 3 biologically independent animals (mean 
% of each subset is shown with SDs). (g) Heat map of differentially expressed 
TFs in Tex subsets. (h) Upset plot of differentially accessible OCRs of TexKLR and 
Texterm relative to Texint (log2 FC > 1, FDR < 0.01, p-values determined by two-sided 
Wilcoxon Rank Sum test and adjusted using the Benjamini & Hochberg procedure 
to obtain FDRs) and their overlap. (i) Schematic of lineage tracing experiment 
(left). Gating strategy to analyze tdTomato+ fractions of Tex subsets. Boxplot of 
the % of tdTomato+ Tex subsets are shown. Box center line, mean; limits, upper 
and lower quartiles; whiskers, minimum and maximum values (n = 4 biologically 
independent animals).
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Extended Data Fig. 6 | scRNA/TCR-seq reveals T cell clone behaviors in 
different organs. (a) Heat map of the fraction overlap between the TCR 
repertoires of the indicated gp33+ and gp33− CD8+ T cell subsets from different 
organs. (b) Stacked bar plot of the phenotypic composition of individual clones 
with divergent behavior across organs. (c) Schematic of the definition of an 
expanded, organ-shared T cell clone for clone behavior analysis. Only clones 
that had at least 5 T cells present in each organ were considered. Shared clone 

numbers across the organs are indicated (left). Table depicting the number of 
expanded clones that are shared across tissues and their clone behaviors (right). 
(d) Gene expression analysis of LCMV-gp transcript (left) and Il21 transcript 
(right) in indicated organs at D22 following Cl13 infection. Significant changes 
were determined by two tailed, unpaired t-test (n = 10 biologically independent 
animals). Box center line, mean; limits, upper and lower quartiles; whiskers, 
minimum and maximum values.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | scRNA-seq reveals the phenotypic composition of 
gp33−, gp33int, and gp33high T cell subsets. (a) UMAPs of cells profiled by scRNA-
seq in the three gp33 T cell fractions colored by the annotated T cell subsets. (b) 
Venn diagram shows the overlap of all detected TCR clones among the three gp33 
T cell fractions. (c) Heat map depicting TCR repertoire overlap (Morisita index) 
among the different gp33 fractions from the indicated samples. (d) Pie chart 
representation of the fraction of the detected clone sizes in the three gp33 T cell 
fractions. (e) Stacked bar plot of the phenotypic distribution of the unique clones 
from the three gp33 T cell fractions. (f ) UMAPs of unique TCR clones determined 
by scRNA/TCR-seq and colored by the phenotypic distribution of the three gp33 
fractions of T cells. (g) Representative flow cytometry plots depict the gating 
strategy to analyze the fractions of Tex subsets in gp33−, gp33int, and gp33high CD8+ 

T cells. Bar plots quantify the frequencies of the indicated Tex subsets in each 
gp33 fraction. Significant changes were determined by two tailed, unpaired t-test 
at p < 0.05 (n = 3 biologically independent animals). Shown are means with SDs. 
(h) Representative flow cytometry plots depict the gating strategy to analyze the 
functionality (IFNG/LAMP1 double positive CD8+ T cells) of gp33−, gp33int, and 
gp33high CD8+ T cells. Boxplot quantifies the double positive fractions of T cells in 
each gp33 fraction. Significant changes were determined by two tailed, unpaired 
t-test at p < 0.05 (n = 7 biologically independent animals). Box center line, mean; 
limits, upper and lower quartiles; whiskers, minimum and maximum values. (i) 
Stacked bar plots show the phenotypic content of TCR clones that were tested for 
TCR signaling avidity. CDR3 amino acid sequences are indicated.
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Extended Data Fig. 8 | Human expanded TILs exhibit divergent, Texterm- and 
TexKLR-biased clone behaviors. (a) Upset plot depicting the combination of 
phenotypes (clone behaviors) for expanded TIL clones. For clarity, the top 10 

most common clone behaviors are shown. Bar plot shows the number of clones 
with the indicated phenotypes. (b) UMAPs of representative expanded TIL clones 
with the indicated clone behaviors.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection scATAC-seq datasets were processed as described previously. Briefly, reads were filtered, trimmed, and aligned to the mm10 reference 

genome using 10X Genomics’ cellranger-atac count pipeline (version 1.2.0).  

 

scRNA-seq reads were aligned to the mm10 reference genome and quantified using cellranger count (10x Genomics, version 3.1.0). Filtered 

gene-barcode matrices that contained only barcodes with unique molecular identifier (UMI) counts that passed the threshold for cell 

detection were used for further analysis. scTCR reads were aligned to the mm10 reference genome and consensus TCR annotation was 

performed using cellranger vdj (10x Genomics, version 3.1.0). TCR annotation was performed using the 10x cellranger vdj pipeline as 

described. 

Data analysis For scATAC-seq data, processed fragment files were loaded into ArchR (version 1.0.1) for additional processing and analysis.  

 

For scRNA-seq data, analysis was performed in R (version 4.0.3) using Seurat (version 4.0.1) using default function parameters unless 

otherwise noted. Doublets were predicted using DoubletFinder (version 2.0.3). Cell types were predicted using SingleR (version 1.4.1) based 

on mouse bulk RNA-seq reference data (MouseRNAseqData) from celldex (version 1.0.0). TCR clone behaviors were visualized using UpSetR 

(version 1.4.0). Morisita-Horn index for quantifying TCR overlap was calculated using the mh function from the R package divo (version 1.0.1). 

 

scRNA velocity analysis 

Spliced and unspliced transcript counts were computed using velocyto’s run10x (version) 0.17.17 on scRNA-seq cellranger outputs [41]. The 

resulting loom files were used for subsequent RNA velocity analysis and visualization with dynamo (version 1.0.0). Preprocessing was 

performed using dynamo.pp.recipe_monocle. RNA velocity was computed using dynamo.tl.dynamics with model='stochastic'. Cell transition 

probabilities were computed using dynamo.tl.cell_velocities with method='pearson' and other_kernels_dict={'transform': 'sqrt'}. RNA velocity 

was visualized using dynamo.pl.streamline_plot. Pseudotime was estimated using single cell potential (umap_ddhodge_potential) based on 

the vector field topology computed using dynamo.vf.VectorField with basis='umap' and dynamo.ext.ddhodge with basis=’umap’. 
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Human scRNA-, TCR-seq analysis 

Processed scRNA-, TCR-seq data from human tumor-infiltrating T cells were downloaded from zenodo [66]. For further analysis we used 

scRNA-seq expression data from the R object data/expression/CD8/integration/CD8.thisStudy_10X.seu.rds and scTCR-seq data from the R 

object data/tcr/byCell/tcr.zhangLab.comb.flt.rds. Additional analysis was performed using Seurat (version 4.0.1). Phenotypic clusters were 

defined using the provided meta.cluster.simplified assignment. Enrichment of mouse LCMV gene signatures was calculated using Seurat’s 

AddModuleScore. TCR clones were defined using the provided cloneID annotation. TCR clone behaviors for tumor-infiltrating T cells (loc == 

‘T’) were visualized using UpSetR (version 1.4.0). For UMAP visualization of single cells, provided normalized expression data was batch 

corrected using harmony’s RunHarmony based on the ‘patient’ variable (version 1.0) [67]. The first 10 harmonized embeddings were used to 

generate the UMAP projections, which were generated with a minimum distance of 0.1. 

 

Custom code used in this study is available at https://github.com/katieyost/LCMV-code-2022.  

 

Flow cytometry analyses and sorting was perfomed by DB FACSAria III using BD FACSDiva Software 6.0 (BD Biosciences). The acquired data 

were analyzed with FlowJo v10 (BD Biosciences).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All sequencing data generated in this study is available under GEO accession: GSE188670.  

 

Single cell data was aligned to the following pre-built mm10 references: 

https://cf.10xgenomics.com/supp/cell-atac/refdata-cellranger-atac-mm10-1.2.0.tar.gz 

https://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-mm10-3.0.0.tar.gz 

https://cf.10xgenomics.com/supp/cell-vdj/refdata-cellranger-vdj-GRCm38-alts-ensembl-3.1.0.tar.gz

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. The number of timepoints and conditions included in this study was determined based on previous 

studies to capture the variability in T cell response over the course of either chronic or acute LCMV infection. For single-cell sample size per 

sample, we attempted to obtain greater than 1,000 paired scRNA/TCR or scATAC profiles per sample to enable analysis of rare cell 

populations.

Data exclusions No data were excluded from analysis.

Replication Samples in this study were derived from mouse samples and biological replicates are available from CD8+ T cell populations that contain 

overlapping T cell subsets that we sorted and processed for single cell analysis separately. Time course experiments do not have biological 

replicates, only sorted gp33+ and gp33- populations from the same animal, which report good technical reproducibility. T cell functional 

assays and experiments assessing the described T cell phenotypes were successfully reproduced.

Randomization Animals were randomly assigned to either acute (Armstrong) or chronic (Clone 13) LCMV infection groups.

Blinding No blinding was used for experimental condition. Because these data were generated using objective quantifications, researchers 

assessing results were not blinded for the experimental design. Blinding is not relevant to this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used CD8b - BioLegend - 126610 - clone YTS156.7.7 

CD4 - BioLegend - 100414 - clone GK1.5 

PD1 - BD - 135216 - clone 29F.1A12 

SLAMF6 - BD - 745250 - clone 13G3 

CX3CR1 - BD - 149007 - clone SA011F11 

KLRG1 - BioLegend - clone 2F1/KLRG1 

CXCR6 - BioLegend - clone SA051D1 

MKI67 - BD - clone B56 

LAMP1 - BioLegend - clone 1D4B 

IFNG - BioLegend - clone XMG1.2 

TNFRSF9 (4-1BB) - BioLegend - clone17B5 

HAVCR2 (TIM3) - BioLegend - RMT3-23

Validation All antibodies that have been used in this study are commercially available and tested by the manufacturer.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Mouse T cell hybridoma cell line from mouse thymus. The description of the cell line is referenced in the methods section of 

the study.  The NFAT-GFP reporter cells were a generous gift from Kenneth Murphy, Washington University.

Authentication These cells induce strong GFP signals in the presence of an artificially introduced T cell receptor (TCR) in the presence of the 

cognate epitope. The cell lines were tested by introducing positive (P14 - high affinity, LCMV-gp33 specific TCR) and negative 

(OT-1, ovalbumin peptide specific TCR) control TCRs in the presence of the immunodominant LCMV epitope, gp33.

Mycoplasma contamination We confirm that the T cell NFAT-GFP hybridoma cell line was tested, and were mycoplasma contamination free.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male C57BL/6J (CD45.2) and B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) mice were purchased from Charles River Laboratories or The Jackson 

Laboratories. All mice were housed in a specific pathogen-free facility and were used for infection at 8–12 week of age. For lineage 

tracing experiments, Cx3cr1-creERT2 mice were crossed to Rosa26-CAG-loxP-stop-loxP-tdTomato reporter mice to generate 

Cx3cr1CreER Rosa26LSL-tdT mice. These animals were housed in a specific pathogen-free facility and were used for infection at 8–12 

week of age. Male mice were used. Mice were housed in a 12 light/12dark cycle, and temperature was kept in between 65-75F with 

50% humidity.

Wild animals No wild animals have been used in the study.

Field-collected samples No field collected samples were used in this study.

Ethics oversight All experiments were performed according to protocols approved by Stanford University’s (protocol number: 33814) and Washington 

University’s (protocol number: 21-0244) Institutional Animal Care and Use Committee. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Single cell suspension of the different organs was prepared by manual dissociation. Organs were minced and gently pushed 

through a 40-micron strainer. Spleen single cell suspensions were spun, and red blood cells were lysed with ACK-lysis buffer 

by resuspending the cell pellet followed by 2 minutes incubation. Cells were then washed with ice-cold PBS and stained for 

sorting in FACS buffer (PBS, 0.1% BSA, 2mM EDTA, 5% FBS). For the lung and liver single-cell suspension, organs were cut into 

small pieces and gently pushed through a 40-micron diameter strainer. Single-cell suspensions were then layered on top of 

Ficoll-Paque Plus (Cytiva) and centrifuged according to the manufacturer’s recommendations. The lymphocyte fraction was 

collected and washed with ice-cold PBS, and then stained for sorting. 

Instrument BD FACSAria III was used for sorting.

Software FlowJo was used for data analysis.

Cell population abundance All sorted samples were checked for after-sorting puirty (>99%).

Gating strategy For all the sorting experiments, cells were gated on single lymphocytes by a forward side scatter gate. After excluding dead 

cells (Aqua positive cells), LCMV antigen specific T cells were defined as CD8+ and tetramer (gp33+) positive. This gating 

scheme was used for scATAC- and scRNA/TCR-seq experiments. Experiments that used additional exhausted T cell subsets for 

single cell experiments utilized CD8+ CD4- cells, and further gated on PD1+ cells. CD8+ PD1+ cells were sorted in a three way 

sorting scheme based on CX3CR1 and SLAMF6 signal. The following three populations were collected: CD8+ PD1+ CX3CR1+; 

CD8+ PD1+ SLAMF6+; and CD8+ PD1+ CX3CR1- SLAMF6-. CD8+ PD1+ double positive populations were also sorted and 

processed for scATAC- and scRNA/TCR-seq.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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