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Cancer cells resistant to immune checkpoint 
blockade acquire interferon-associated 
epigenetic memory to sustain T cell 
dysfunction

Jingya Qiu1,2,3,12, Bihui Xu1,2,9,12, Darwin Ye1,2,3,4, Diqiu Ren2,5, Shangshang Wang1,2,3, 
Joseph L. Benci1,2,10, Yuanming Xu1,2,11, Hemant Ishwaran6, 
Jean-Christophe Beltra4,7,8, E. John Wherry    3,4,7,8, Junwei Shi    2,3,5 & 
Andy J. Minn    1,2,3,4,8 

Prolonged interferon (IFN) signaling in cancer cells can promote resistance 
to immune checkpoint blockade (ICB). How cancer cells retain effects of 
prolonged IFN stimulation to coordinate resistance is unclear. We show that, 
across human and/or mouse tumors, immune dysfunction is associated with 
cancer cells acquiring epigenetic features of inflammatory memory. Here, 
inflammatory memory domains, many of which are initiated by chronic 
IFN-γ, are maintained by signal transducer and activator of transcription 
(STAT)1 and IFN regulatory factor (IRF)3 and link histone 3 lysine 4 monom
ethylation (H3K4me1)-marked chromatin accessibility to increased expres
sion of a subset of IFN-stimulated genes (ISGs). These ISGs include the RNA 
sensor OAS1 that amplifies type I IFN (IFN-I) and immune inhibitory genes. 
Abrogating cancer cell IFN-I signaling restores anti-programmed cell death 
protein 1 (PD1) response by increasing IFN-γ in immune cells, promoting 
dendritic cell and CD8+ T cell interactions, and expanding T cells toward 
effector-like states rather than exhausted states. Thus, cancer cells acquire 
inflammatory memory to augment a subset of ISGs that promote and 
predict IFN-driven immune dysfunction.

IFN-I and type II IFN (IFN-γ) play important roles in promoting response 
to ICB. These roles include enhancing expression of major histocompat-
ibility complex class I (MHC-I) on target cells and facilitating productive 
interactions between T cells and dendritic cells1–3. However, in cancer 

and in chronic virus infection, persistent IFN signaling can contribute 
to immune suppression4–9. This function of IFN may relate to its role 
in limiting immune-mediated pathology under conditions of chronic 
inflammation. Besides the duration of IFN signaling, the opposing 
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melanoma and is preferentially expressed by immune cells. By con-
trast, the ISG.RS subset consists of 38 distinct ISGs that are typically 
associated with IFN-I, predominantly expressed by cancer cells, and 
independently predicts resistance to ICB. To test whether these dis-
tinct and opposing ISGs associate with immune function broadly 
across human cancers, we interrogated gene expression data from 
a pan-cancer panel of tumors from The Cancer Genome Atlas (TCGA) 
(n = 8,402) (Fig. 1a and Extended Data Fig. 1a). For each tumor, we esti-
mated a CD8+ T cell cytolytic activity score based on the expression of 
the CD8+ T cell-specific markers GZMA and PRF1 (ref. 23) (Extended Data 
Fig. 1b). Across all cancers, IFNG.GS expression and ISG.RS expression 
were positively correlated with each other, as expected (Fig. 1b). With 
increasing IFNG.GS expression, there was a steep increase in CD8+ T cell 
cytolytic activity but only when ISG.RS expression was relatively low 
(Fig. 1b, below red regression line). By contrast, when ISG.RS expres-
sion was relatively high (Fig. 1b, above red regression line), CD8+ T cell 
cytolytic activity remained blunted despite increasing IFNG.GS levels. 
When these data were used in a multiple regression model to estimate 
independent effects, across most cancer types, the IFNG.GS subset 
significantly predicted higher CD8+ T cell cytolytic activity, while the 
ISG.RS exhibited the opposite association (Fig. 1c). By contrast, ran-
dom gene sets of similar size displayed no association with CD8+ T cell 
cytolytic activity (Extended Data Fig. 1c). Thus, distinct ISGs associated 
with cancer or immune cells can have opposing effects on CD8+ T cell 
activity that depend on their relative expression. These observations 
suggest a model in which IFNG.GS and IFN expression by immune cells 
can increase IFN signaling and ISG.RS expression in cancer cells, result-
ing in feedback inhibition and immune dysfunction characterized by 
high ISG.RS expression relative to IFNG.GS expression (Fig. 1c, bottom).

Because not all cancer cells appear prone to developing high  
ISG.RS expression relative to IFNG.GS expression, we surmised that the 
epigenetic state of cancer cells could be a factor. To investigate this, 
we integrated the subset of TCGA tumors with paired RNA sequencing 
(RNA-seq) and assay for transposase-accessible chromatin (ATAC) 
sequencing (ATAC-seq) profiles (n = 382) to model gene expression 
using chromatin accessibility features (Extended Data Fig. 1a). Briefly, 
for each ISG.RS gene, we constructed an elastic net linear regression 
model to predict RNA expression using all accessible chromatin peaks 
within a ±92-kb cis-regulatory window (median size of a mouse topo-
logically associated domain). Because infiltrating immune cells can 
contribute to ATAC-seq signals in solid tumors, we filtered out known 
immune-specific regulatory elements24 to focus on cancer cell-specific 
chromatin accessibility. This strategy allowed us to predict putative 
cis-regulatory elements (cis-REs) for ISG.RS genes and to identify  
ISG.RS genes with expression that is highly explained by chromatin 
accessibility. Each ISG.RS gene was linked to a median of six cis-REs, 

functions of this cytokine may also be determined by the type of cell 
that receives the signal. In human melanoma, a subset of ISGs was found 
to be predominantly expressed by cancer cells compared to immune 
cells, and expression of this set of ISGs predicts clinical resistance to 
ICB7. Accordingly, in mouse tumor models, preventing IFN-I or IFN-γ 
signaling in cancer cells decreases this subset of cancer-associated ISGs 
and can enhance the efficacy of ICB6,7,10. For IFN-γ, abrogating signaling 
in cancer cells improves the function of CD8+ T cells, natural killer (NK) 
cells, innate lymphoid cells and other innate immune populations7. 
Despite this, inhibiting IFN-γ signaling in cancer cells can come at the 
expense of interfering with MHC-I expression, which biases toward 
innate immune killing in tumors with low baseline MHC-I7 or contrib-
utes to resistance11,12. Whether preventing IFN-I signaling might better 
enable adaptive anti-tumor immunity is unclear.

Since immune dysfunction in cancer decreases IFN levels in the 
tumor, the ability of cancer cells to maintain IFN-driven immunosup-
pression would seem difficult to sustain and even self-limiting. How-
ever, recent work suggests that acquisition of persistently increased 
chromatin accessibility brought about by initial activation of inflamma-
tory signaling is one way to enhance signal strength from subsequent 
stimulation13–15. The retention of increased chromatin accessibility 
even after inflammatory signals abate is characteristic of inflammatory 
memory and is associated with H3K4me1 and transcription factors 
(TFs) such as AP1 and STAT3. Interestingly, ISG-high cancer cells that 
are resistant to ICB display epigenetic changes that partly result from 
chronic IFN-γ stimulation6,16. These epigenetic changes are character-
ized by altered chromatin accessibility linked to the IFN-regulated TF 
STAT1. However, it is unknown whether STAT1 contributes to this altered 
epigenome and how epigenetic changes might enhance IFN signaling 
in resistant tumors with attenuated levels of IFN.

Blocking the immune inhibitory receptor PD1 drives the differen-
tiation of progenitor CD8+ T cells into a terminally exhausted popu-
lation with limited effector and proliferative capacity compared to 
effector and memory T cells17–19. Although exhausted CD8+ T cells (TEX) 
have important anti-tumor effects, inhibiting the PD1–programmed 
cell death ligand 1 (PDL1) axis typically does not convert TEX cells into 
effector T cells, hence limiting the efficacy of ICB20,21. IFN-I signaling in 
T cells has been implicated in controlling the balance of these fates by 
acting on progenitor cells19,22; however, how modulating IFN-I signaling 
in cancer cells impacts T cell fate remains poorly defined.

Results
Distinct ISGs predict CD8+ T cell activity in human cancers
We previously identified two non-overlapping subsets of ISGs denoted 
ISG.RS (ISG resistance signature) and IFNG.GS (IFNG gene signature)7. 
The IFNG.GS subset predicts clinical ICB response in patients with 

Fig. 1 | Distinct ISGs and epigenetic features from cancer cells predict low 
CD8+ T cell cytolytic activity. a, Schema of genome-wide assays and deduced 
features to examine the relationship between cancer cell epigenetic features, 
IFN-I signaling and immune function. b, Relationship between IFNG.GS and  
ISG.RS expression for all TCGA tumors (n = 8,402), colored by CD8+ T cell 
cytolytic activity score. c, Standardized regression coefficients (with 95% 
confidence intervals (CIs)) and schema (bottom) for the effect of IFNG.GS 
and ISG.RS expression on CD8+ T cell cytolytic activity for each cancer type. 
Regression models for all cancer types are significant (overall F-test, P < 0.001). 
Bottom schema depicts a hypothetical feedback inhibition circuit between 
immune and cancer cells. See Genomic Data Commons (https://gdc.cancer.
gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations) for 
definitions for TCGA cancer type abbreviations. d, Distance from the TSS for 
all ATAC-seq peaks surrounding linked ISG.RS genes versus its standardized 
regression coefficient (absolute value) for predicting ISG.RS expression. 
Schema for integrating RNA-seq and ATAC-seq data to link peaks to genes and 
identify putative cis-REs is also shown. e, Proportion of variance explained (R2) 
for ISG.RS expression from a linear model using the chromatin accessibility 
of putative cis-REs as independent predictors. f, Standardized regression 

coefficients (with 95% confidence intervals) representing the effect of IFNG.GS 
and ISG.RS expression (top) or chromatin accessibility (bottom) on CD8+ T cell 
cytolytic activity for all cancer types with paired RNA-seq and ATAC-seq data 
(n = 382). g, Enrichment of archetype (non-redundant) motifs in cis-REs linked to 
ISG.RS genes or annotated CD8+ T cell-specific regulatory elements. Enrichment 
P values are shown with larger circle sizes indicating greater significance. h, 
ATAC tracks at the OAS1 loci for representative kidney renal cell papillary cell 
carcinoma tumors with high (blue) or low (red) CD8+ T cell cytolytic activity 
(n = 3 tumors each), along with putative cis-REs (beige) that negatively correlate 
with CD8+ T cell cytolytic activity. Annotation bar (bottom) demarcates called 
peaks, with black and gray bars indicating putative cis-REs linked to OAS1 and 
other peaks, respectively. chr, chromosome. i, Pearson correlation (r) of OAS1 
cis-RE chromatin accessibility and CD8+ T cell activity across all paired tumor 
samples for cancer types lung squamous cell carcinoma (LUSC, n = 16 patients), 
lung adenocarcinoma (LUAD, n = 21), stomach adenocarcinoma (STAD, n = 16), 
and kidney renal papillary cell carcinoma (KIRP, n = 33). Individual points 
are color coded by OAS1 expression. P values were determined by two-sided 
correlation test based on Pearson’s coefficient.
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consistent with previous reports of peak-to-gene links24 (Extended 
Data Fig. 1d). Strongly linked ISG.RS cis-REs were enriched at 
promoter-proximal regions, as well as in distal regions over 100 kb 
upstream and downstream of transcription start sites (TSSs; Fig. 1d). 
Expression of most ISG.RS genes is highly explained by chromatin 
accessibility, indicative of epigenetic regulation (Fig. 1e).

Similar to RNA expression, chromatin accessibility of ISG.RS 
cis-REs was also negatively associated with CD8+ T cell cytolytic activity, 

in contrast to cis-REs linked to IFNG.GS genes (Fig. 1f). A search for 
TF motifs enriched in these cis-REs uncovered the IRF/2 archetype 
(non-redundant) motif. This motif is associated with TFs regulated by 
IFN and pattern-recognition receptor (PRR) signaling, including STAT1 
and members of the IRF family (Fig. 1g). Notably, the IRF/2 motif is not 
enriched in immune-specific regulatory elements, suggesting that fac-
tors involved in ISG.RS and IFNG.GS regulation are distinct. One ISG.RS  
gene with evidence of strong epigenetic regulation is OAS1 (Fig. 1e). 
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In several cancer types, proximal and distal cis-REs linked to OAS1 are 
inaccessible in tumors with high CD8+ T cell cytolytic activity but are 
strikingly accessible in tumors with low CD8+ T cell activity (Fig. 1h,i 
and Extended Data Fig. 2a–c). Together, these data reveal a relation-
ship between cancer cell epigenetic features, high cancer cell-intrinsic  
ISG.RS expression, and immune dysfunction. ISG.RS genes such as OAS1 
link these relationships in multiple human cancers.

Widespread epigenetic remodeling of ICB-resistant tumors
Because epigenetic features associated with elevated ISG.RS in human 
cancer cells can predict low CD8+ T cell cytolytic activity, we next inves-
tigated how the chromatin landscape of cancer cells can promote high 
ISG.RS expression and how this contributes to immunotherapy resist-
ance. Toward this end, we employed the mouse tumor model Res 499, 
which was derived from an ICB-relapsed B16-F10 (B16) melanoma tumor 
and exhibits high expression of ISG.RS16. Examination of ATAC-seq data 
from B16 and Res 499 cancer cells sorted from mouse tumors revealed 
that ICB-resistant Res 499 cancer cells have highly distinct epigenomes 
compared to B16 cells (Fig. 2a,b and Extended Data Fig. 3a). About 15% 
of the 87,697 consensus peaks were significantly altered in Res 499, 
indicating dramatic remodeling of the chromatin landscape (Fig. 2c). 
Genome-wide modeling of gene expression using chromatin accessibil-
ity (Extended Data Fig. 1a) revealed that Oas1g and its paralog Oas1a 
were among the top genes predicted to be regulated by putative cis-REs 
(Fig. 2d). These Oas1 genes are orthologs to human OAS1, which also 
exhibits expression that is strongly associated with epigenetic changes 
in human TCGA tumors (Fig. 1e). Thus, these data suggest that, similar 
to human tumors, mouse tumors also reveal a relationship between 
cancer cell epigenetic features, expression of ISGs such as Oas1, and 
immune dysfunction.

To map the cancer cell epigenetic changes associated with ICB 
resistance to regulatory elements, we used the same collection of 
B16 and Res 499 tumors to perform genome-wide in vivo cleavage 

under targets and release using nuclease (CUT&RUN) analysis for the 
active promoter mark histone 3 lysine 4 trimethylation (H3K4me3), 
the active enhancer mark histone 3 lysine 27 acetylation (H3K27ac), 
and the enhancer mark H3K4me1 (Fig. 2a and Extended Data Fig. 3b). 
We integrated these epigenomic data to annotate an in vivo catalog 
of promoters and enhancers (Extended Data Fig. 3c) that are either 
activated, deactivated, or constitutive in Res 499 tumors relative to B16 
tumors (Fig. 2e and Extended Data Fig. 3d). Most regulatory elements 
with significantly altered activity are enhancers in distal intergenic or 
intronic regions (Extended Data Fig. 3e) exhibiting greater H3K27ac 
signal and ATAC chromatin accessibility (Fig. 2f). Of the 3,738 enhanc-
ers with increased H3K27ac activity in Res 499 cells, which we denote as 
Res 499 activated enhancers, the majority have pre-existing chromatin 
accessibility in B16 cells, while only about 10% are acquired de novo 
(Extended Data Fig. 3f). Analysis of associated TF motifs revealed that 
enhancers and promoters activated in Res 499 cells are enriched for 
the IRF/2 archetype motif that represents IFN-stimulated response ele-
ments (ISRE) predicted to accommodate STAT1–STAT2 heterodimers 
and IRF family TFs (Fig. 2g). This IRF/2 motif is the same motif enriched 
in putative cis-REs linked to cancer cell ISG.RS genes in TCGA tumors 
(Fig. 1g). Consistent with this, paired RNA-seq data revealed that genes 
within a 50-kb cis-regulatory window flanking the activated enhancers 
exhibit elevated expression in Res 499 tumors (Fig. 2h) and are enriched 
for genes belonging to the Janus kinase ( JAK)–STAT signaling pathway 
(Extended Data Fig. 3g). Thus, similar to human tumors, widespread 
in vivo chromatin remodeling in ICB-resistant Res 499 cancer cells is 
characterized by activated ISRE-related enhancers linked to genes 
associated with IFN signaling.

ICB-resistant tumors acquire inflammatory memory domains
Previously, we showed that chronic IFN-γ stimulation of B16 cells for 
3 weeks in vitro is sufficient to increase STAT1 levels, instigate epige-
netic changes that partially overlap with those of ICB-relapsed Res 499 

Fig. 2 | Widespread remodeling of the relapsed tumor epigenome is 
characterized by activated enhancers with ISRE-like motifs. a, Schematic 
for multiomic profiling of B16 and Res 499 tumors, with or without Stat1 
KO. b, Principal-component analysis (PCA) of RNA expression (left) and 
chromatin accessibility (right) for B16 and Res 499 (R499) cancer cells with 
or without Stat1 KO, sorted from in vivo tumors (B16 and Res 499, n = 3; B16 
Stat1 KO, n = 4; Res 499 Stat1 KO, n = 5 mice). PC, principal component. c, Mean 
chromatin accessibility and log2 fold change between B16 and Res 499 cells 
for all consensus ATAC peaks. Red dots indicate peaks that are significantly 
differentially accessible between B16 and Res 499 cells (false discovery rate 
(FDR) < 0.05). d, Variance explained (R2) for gene expression from a linear model 
using the chromatin accessibility of putative cis-REs. e, Schema and criteria for 
annotating regulatory elements (REs; left) and representative tracks (right) for 
activated promoters, activated enhancers, or constitutive regulatory elements 
in Res 499 cells compared to B16 cells. f, Heatmap of H3K27ac and ATAC signal 
intensity over Res 499 activated enhancers (n = 2 mice per condition for the 

H3K27ac assay, n = 5 mice per condition for the ATAC assay). g, Enrichment 
of archetype motifs in annotated regulatory elements that are activated, 
deactivated, or constitutive between Res 499 and B16 cells. Enrichment P 
values are shown with larger circle sizes indicating greater significance. Boxes 
for highlighted archetype motifs contain the motif logo and select TF motifs 
belonging to the archetype motif group. Schema for use of the integrated 
multiomic data for g,h is shown above. h, Gene set enrichment score of genes 
located within a 50-kb cis-regulatory window of the specified set of annotated 
regulatory elements in B16 or Res 499 cancer cells (n = 3 mice per condition). P 
values were determined by two-sided t-test. i, Summary ATAC enrichment score 
for a subset of Res 499 activated enhancers (900 of 3,738) induced by chronic 
IFN-γ in cancer cells sorted from the indicated in vivo tumors (n = 3 mice per 
condition). B16 tumors were treated with IFN-γ in vitro for 6 h (acute) or 3.5 
weeks (chronic) before implantation into mice (schema, left). P values were 
calculated from two-sided t-tests. NS, not significant.

Fig. 3 | Tumors resistant to ICB are characterized by H3K4me1-marked 
inflammatory memory domains regulated by STAT1 and IRF3. a, Schema 
for identifying IFN-associated inflammatory memory domains (IFN-IMDs) in 
the context of acquired resistance. IFN signaling is terminated in vivo by Stat1 
KO to reveal either persistent H3K4me1 and chromatin accessibility (memory 
domains) or non-persistent chromatin features (resolved domains). b,c, 
Summary enrichment scores (b) and representative tracks (c) for H3K27ac, 
H3K4me1, or ATAC signal at IFN-IMDs or resolved domains in cancer cells sorted 
from the indicated in vivo tumors (n = 2 mice per condition for each assay). 
Red bars overlaid on tracks highlight IFN-IMDs or resolved domains. P values 
were determined by one-way ANOVA with post hoc Tukey’s honest significant 
difference (HSD) test. DKO, double KO; SKO, Stat1 KO. d, Genomic regions 
where IFN-IMDs reside (top) and percent of IFN-IMDs that overlap Res 499 
activated enhancers (bottom). UTR, untranslated region. e, TF motifs enriched in 
inflammatory memory domains. P values are color coded, and larger circle sizes 

indicate greater significance. Motifs highlighted in red are associated with  
IFN signaling, and motifs in blue are associated with inflammatory memory.  
f, Summary enrichment scores for the inflammatory memory gene signature 
(left) and top gene ontology biological process terms enriched in this gene 
set (right) (n = 3, 5, 3 and 5 mice per condition, from left to right). P values 
were determined by two-sided t-test. g, Log2 fold changes in expression of 
individual ISG.RS genes between Res 499 and B16 in vivo tumors. IFN-associated 
inflammatory memory genes are denoted in orange; non-memory genes are 
denoted in gray. h, Expression of ISG.RS genes (RNA) or H3K27ac, H3K4me1, or 
ATAC signal intensity at cis-REs linked to these genes in cancer cells sorted from 
the indicated in vivo tumors (n = 3, 5, 3 and 5 mice per condition for the RNA 
assay; n = 2 mice per condition for H3K27ac and H3K4me1 assays; n = 5 mice per 
condition for the ATAC assay). P values were determined by one-way ANOVA with 
post hoc Tukey’s HSD test. Box plots represent the 25th percentile, the median, 
the 75th percentile and 1.5× interquartile range (IQR) (whiskers).
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tumors, and confer ICB resistance6. Therefore, to examine whether the 
Res 499 activated enhancers are also linked to chronic IFN-γ signal-
ing, we stimulated B16 cells for either 6 h (acute) or 3.5 weeks (chronic) 
in vitro before implantation into syngeneic mice and profiled the 

resulting established tumors by ATAC-seq. We observed that chronic 
IFN-γ stimulation, but not acute stimulation, led to increased chromatin 
accessibility in vivo at about one-quarter of Res 499 activated enhanc-
ers (Fig. 2i and Extended Data Fig. 3h). These chronic IFN-γ-induced 
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enhancers were also specifically enriched with IRF/2 motifs (Extended Data  
Fig. 3i). Conversely, to determine whether preventing IFN-γ signaling 
could impact epigenetic changes in Res 499 tumors in vivo, we deleted 
Stat1 in Res 499 cancer cells before implantation into mice. Surprisingly, 
although STAT1 footprints were associated with IRF/2 motifs (Extended 
Data Fig. 3j) and H3K27ac levels decreased at Res 499 activated enhanc-
ers upon Stat1 knockout (KO), levels of chromatin accessibility and 
H3K4me1 levels persisted (Extended Data Fig. 4a). This persistence of 
chromatin accessibility and H3K4me1 at Res 499 activated enhancers in 
the absence of active IFN signaling is reminiscent of epigenetic features 
of inflammatory memory. Thus, ICB-resistant cancer cells may retain 
memory of chronic IFN signaling in chromatin domains.

Chromatin regions that gain accessibility during an inflammatory 
response but remain accessible after signal termination in order to 
enhance future responses have been defined as inflammatory memory 
domains15,25. To formally define inflammatory memory domains in 
the context of chronic IFN-driven ICB resistance, we identified all 
chromatin domains that uniquely maintain persistent chromatin acces-
sibility in Res 499 tumors compared to B16 tumors after preventing 
IFN signaling by Stat1 KO (Fig. 3a and Methods). Upon STAT1 loss, 
these IFN-associated inflammatory memory domains (IFN-IMDs) lost 
the active enhancer mark H3K27ac in both B16 and Res 499 cells but 
retained chromatin accessibility and H3K4me1 deposition in Res 499 
tumors only (Fig. 3b,c). By contrast, although ‘resolved domains’ were 
also associated with IFN-related pathways (Extended Data Fig. 4b), they 
did not maintain persistent chromatin accessibility and H3K4me1 with 
STAT1 loss (Fig. 3c and Extended Data Fig. 4c). Approximately 21% of 
IFN-IMDs overlapped with Res 499 activated enhancers (Fig. 3d), which 
covered enhancers that are related to cytokines and processes other 
than IFN (Extended Data Fig. 3g). IFN-IMDs are enriched with not only 
the archetype motif IRF/2, comprising IFN signaling TFs (for example, 
STAT1, IRF3 and IRF1), but are also co-enriched for known inflammatory 
memory TFs belonging to the AP1, ETS and ATF families25 (Fig. 3e).

Next, to define putative inflammatory memory genes, we used 
a correlation-based method to identify gene expression linked to 
IFN-IMD chromatin accessibility after chronic (3.5 weeks) but not 
acute IFN-γ stimulation. This resulted in increased expression of 611 
IFN-IMD-linked inflammatory memory genes in vivo (Extended Data 
Fig. 4e). These genes were also elevated in Res 499 tumors, consistent 
with Res 499 activated enhancers arising at least partly from chronic 
IFN-γ signaling. Inflammatory memory genes include IFN-I response 
and viral defense genes (Fig. 3f), the majority of which also had ele-
vated expression in resistant tumors compared to sensitive tumors 
in vivo (Extended Data Fig. 4f). Importantly, most ISG.RS genes are 
included in these inflammatory memory genes (Fig. 3g). Indeed, direct 
examination of cis-REs associated with ISG.RS genes confirms that, 
when IFN signaling is prevented with Stat1 KO, H3K27ac activity and 
RNA expression decreases but H3K4me1 and chromatin accessibil-
ity remain elevated in Res 499 cells compared to B16 cells (Fig. 3h).  

In sum, these findings suggest that Res 499 tumors are characterized 
by H3K4me1-marked IFN-IMDs and increased expression of a subset 
of linked ISGs that prominently includes ISG.RS genes. Thus, elevated 
ISG.RS expression represents the acquisition of ICB resistance and 
epigenetic features of IFN-associated inflammatory memory.

The OAS1 pathway amplifies cancer cell IFN-I signaling
Because inflammatory memory domains are thought to support 
enhanced transcriptional responses to subsequent inflammatory 
stimulation26, we considered that ICB-resistant cancer cells using IFN-I 
signaling to promote immune dysfunction may benefit from these 
attributes. Specifically, as cancer cells use IFN-I to drive ICB resistance, 
ensuing immune dysfunction would be expected to decrease IFN-I levels 
in the tumor and impede cancer cells from sustaining IFN-driven resist-
ance. Indeed, single-cell RNA sequencing (scRNA-seq) of immune popu-
lations from anti-PD1-treated or untreated Res 499 tumors revealed 
that Ifnb1 levels are low but increase with deletion of the IFN-I recep-
tor (IFNAR) in cancer cells (Extended Data Fig. 5a), suggesting that 
IFN-I signaling in resistant cancer cells can attenuate IFN-I levels in the 
tumor. Thus, we sought to determine whether IFN-IMDs may enable 
cancer cells to amplify IFN-I signaling, sustain high ISG.RS expression, 
and maintain immune dysfunction as suggested by our TCGA analysis  
(Fig. 1c, yellow arrow in bottom schema).

Notably, the ISG.RS gene Oas1, which is one of the top ISGs that 
link epigenetic features to ICB resistance (Figs. 1e and 2d), is a cytosolic 
RNA PRR evolutionarily related to the DNA sensor cGAS and implicated 
in amplifying the IFN-I response through the downstream RNA sensor 
RIG-I27,28 (Fig. 4a). Res 499 cells exhibited markedly higher tonic (base-
line) levels of Oas1 transcript and OAS1 protein in vitro compared to B16 
cells (Fig. 4b and Extended Data Fig. 5b). Similar findings were observed 
with Res 237 mouse breast cancer cells derived from an ICB-relapsed 
TSA tumor (Extended Data Fig. 5c,d). Therefore, to determine whether 
elevated OAS1 levels enable ICB-resistant cancer cells to amplify IFN-I 
signaling and maintain high ISG.RS expression, we deleted Oas1 by 
CRISPR. At baseline, despite IFN-I levels being too low for detection 
by protein, KO of Oas1a and Oas1g diminished the higher tonic ISG 
expression found in ICB-resistant Res 499 and Res 237 cells compared 
to that in their ICB-sensitive parental counterparts (Fig. 4c). After 
stimulation with the double-stranded RNA mimetic polyI:C, Res 499 
and Res 237 cells also generated greater amounts of IFN-I and induced 
higher levels of ISGs than parental cells, a property that was also largely 
abrogated by Oas1 KO (Fig. 4d and Extended Data Fig. 5e–g). In sum, 
these results suggest that ICB-resistant cancer cells can amplify IFN-I 
signaling through the OAS1 pathway, possibly enabled by IFN-IMDs.

IRF3 and STAT1 establish inflammatory memory domains
We next sought to understand how the ability of OAS1 to amplify IFN-I 
signaling may result from and/or promote IFN-IMDs. Besides STAT1, the 
IRF/2 archetype motif that is enriched in Res 499 activated enhancers 

Fig. 4 | OAS1 is controlled by inflammatory memory domains and amplifies 
IFN-I signaling in ICB-resistant cancer cells. a, Model for OAS1 regulation of 
IFN-I signaling. dsRNA, double-stranded RNA. b, Protein expression of OAS1 in 
B16 and Res 499 cells in vitro. The image shown is representative of two technical 
repeats. c, Gene set enrichment analysis (GSEA) of IFN-I-related ISGs in Res 499 
wild-type (WT) versus Res 499 Oas1-KO cells (left) and Res 237 WT versus Res  
237 Oas1-KO cells (right), both in vitro. NES, normalized enrichment score.  
d, Concentration of IFN-α protein (left; B16, n = 6; Res 499, n = 12; Res 499 Oas1 
KO, n = 8) and relative RNA expression of indicated ISGs (middle and right; 
B16, n = 4; Res 499, n = 11; Res 499 Oas1 KO, n = 7) following polyI:C transfection 
of B16, Res 499 or Res 499 Oas1-KO cells in vitro (n represents biological 
replicates). e, H3K27ac, H3K4me1, ATAC, and RNA signal tracks of the Oas1a–
Oas1g locus from B16 or Res 499 (R499), B16 or Res 499 Stat1-KO (SKO), Res 499 
Irf3-KO (IKO), and Res 499 Stat1- and Irf3-double KO (DKO) cells sorted from 
in vivo tumors. Highlighted regions (red) indicate putative IFN-IMDs linked to 
Oas1a–Oas1g. Average signal of the highlighted regions is summarized in the 

right-hand margin (n = 2 mice per condition for H3K27ac and H3K4me1 assays; 
n = 3, 2, 4, 3, 4 and 3 mice per condition for the ATAC assay). f, Summary ATAC 
enrichment scores at putative cis-REs of ISG.RS genes in cancer cells sorted from 
the indicated in vivo tumors (B16, n = 3; B16 SKO, n = 2; Res 499 WT, n = 4; Res 
499 SKO, n = 3; Res 499 Irf3 KO, n = 4; Res 499 DKO, n = 3 mice). g, Summary ATAC 
enrichment scores at IFN-IMDs (left), heatmap of chromatin accessibility at 
individual IFN-IMDs (middle), and summary ATAC enrichment scores at resolved 
domains (right) in cancer cells sorted from the indicated in vivo tumors (n = 3, 2, 
4, 3, 4 and 3 mice per condition). h, Survival of mice with Res 499 WT or Oas1-KO 
tumors either untreated (NT) or treated with anti-CTLA4 plus anti-PDL1 (NT, 
n = 10; anti-CTLA4 and anti-PDL1, n = 27 mice for each genotype). i, Survival of 
mice with B16 or Res 499 WT or Ddx58 (gene for RIG-I) KO tumors treated with or 
without anti-CTLA4 plus anti-PD1 antibodies (untreated, n = 5; ICB, n = 10 mice 
for each genotype). P values were determined by two-sided t-test or log-rank 
test for survival. Box plots represent the 25th percentile, the median, the 75th 
percentile and 1.5× IQR (whiskers).
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and IFN-IMDs (Figs. 2g and 3e) also accommodates several IRF family 
members. Moreover, IRFs are expected to be activated by the OAS1 
pathway, similar to STAT1 activation by IFN-I signaling, suggesting 
a possible feedforward mechanism (Fig. 4a). To determine whether 
STAT1 and IRFs control increased tonic OAS1 levels, we first performed 
small interfering (si)RNA knockdown for various IRFs in either control 

or Stat1-KO Res 499 cells. This revealed that knockdown of Irf3, but not 
other IRF genes tested, cooperated with Stat1 KO to diminish Oas1 levels 
(Extended Data Fig. 5h). Examination of a 50-kb cis-regulatory window 
for Oas1 uncovered two H3K27ac-marked IFN-IMDs (which are also Res 
499 activated enhancers) that were highly predictive of Oas1 expres-
sion (Fig. 4e). Accordingly, when IFN signaling was prevented with 
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Stat1 KO, H3K27ac activity in these domains decreased, but H3K4me1 
and chromatin accessibility remained elevated in Res 499 tumors com-
pared to B16 tumors. CRISPR-mediated co-deletion of Irf3 along with 
Stat1 abrogated this persistent chromatin accessibility (Fig. 4e, right). 
In fact, co-deletion of Stat1 and Irf3, but not deletion of either alone, 
largely abrogated chromatin accessibility of cis-REs from ISG.RS genes  
(Fig. 4f) and of the majority of IFN-IMDs and Res 499 activated enhanc-
ers genome-wide (Fig. 4g and Extended Data Fig. 5i). By contrast, Irf3 
deletion was inconsequential for the chromatin accessibility of resolved 
domains, which were STAT1 dependent (Fig. 4g, right). In total, these 
results suggest that Res 499 activated enhancers and IFN-IMDs are initi-
ated by STAT1, leading to high levels of ISG.RS genes such as Oas1. OAS1 
then amplifies IFN-I and PRR signaling when IFN in the tumor is attenu-
ated, enabling STAT1 and IRF3 to maintain IFN-IMDs and enhanced ISG 
expression through a feedforward loop.

OAS1 and the IFN-I pathway in cancer cells inhibit ICB response
Having linked epigenetic changes in ICB-resistant tumors with fea-
tures of inflammatory memory and the ability to amplify IFN-I sign-
aling, we next sought to understand how these properties help to 
sustain ICB resistance. KO of Oas1a and Oas1g in either ICB-resistant 
Res 499 or Res 237 cells restored the response to anti-cytotoxic T 
lymphocyte-associated protein 4 (CTLA4) plus anti-PDL1 or anti-CTLA4 
therapy alone, respectively (Fig. 4h and Extended Data Fig. 6a), and 
was accompanied by greater abundance of intratumoral CD8+ T cells 
(Extended Data Fig. 6b). Consistent with OAS1 regulating ICB resistance 
through RIG-I and IFN-I signaling, KO of Ddx58 (gene for RIG-I) (Fig. 4i) 
or Ifnar1 (Fig. 5a and Extended Data Fig. 6c), or delayed administra-
tion of a JAK inhibitor (Extended Data Fig. 6d) also re-sensitized Res 
499 tumors to anti-PD1 and/or anti-PDL1 ± anti-CTLA4 therapy and 
improved infiltration of total CD8+ T cells (Fig. 5b) and PRF1+CD8+ T cells 
(Extended Data Fig. 6e). Notably, improved response from deletion of 
either Ddx58 or Ifnar1 was specifically observed for Res 499 tumors but 
not B16 tumors (Fig. 4i and Extended Data Fig. 6f). Although disrupting 
IFN-I signaling can improve ICB response for treatment-naive tumors, 
as in the case of CT26 colorectal tumors (Extended Data Fig. 6g), this 
preference for Res 499 versus B16 tumors highlights how cancer cell 
IFN-I signaling can specifically drive acquired ICB resistance. Thus, 
blocking cancer cell IFN-I signaling or the upstream RNA PRRs that 
amplify this pathway can improve ICB efficacy, particularly in the con-
text of acquired resistance and IFN-related inflammatory memory.

To further understand how inhibiting cancer cell IFN-I signaling 
restores response in the context of acquired ICB resistance, we opted 
to focus on the direct effects of Ifnar1 KO on anti-PD1 efficacy in the 
Res 499 model. Here, improved anti-PD1 response from Ifnar1 KO was 
accompanied by greater MHC-I levels on cancer cells (Fig. 5c), required 
cancer cell MHC-I expression (Fig. 5a), and was highly dependent on 
CD8+ T cells and host PRF1, while being comparatively less dependent 
on NK1.1+ innate immune cells (Fig. 5a and Extended Data Fig. 6h,i). 
Intriguingly, the improvement in CD8+ T cell infiltration and anti-PD1 

response after Ifnar1 KO was evident even when a minority of cancer 
cells were unable to signal through IFNAR (Fig. 5d,e), suggesting that 
blocking cancer cell IFN-I signaling principally restores a missing func-
tion important for T cell activation rather than mitigates an inhibitory 
function that prevents immune-mediated killing. Indeed, Ifnar1 KO in 
Res 499 cells decreased expression of many genes previously dem-
onstrated to promote anti-PD1 resistance29 including genes that may 
alter inflammatory cytokine production (for example, Otulin, Rnf31, 
Adar) (Fig. 5f). By contrast, preventing IFN-γ receptor signaling by 
KO of Ifngr1 in Res 499 cancer cells did not increase MHC-I (Fig. 5c), 
required a majority of cells to have Ifngr1 KO to restore ICB response 
(Fig. 5d), and most strongly decreased expression of genes that either 
control MHC-I antigen presentation or retard innate immune recogni-
tion (for example, Tap1, Tap2, H2-T23) (Fig. 5f), which is consistent with 
Ifngr1 KO facilitating innate immune killing of Res 499 tumors7. In total, 
these findings suggest that interfering with cancer cell IFN-I signaling 
restores the anti-tumor response primarily at an early step important 
for T cell activation and differentiation rather than at a later step that 
alters the cell-intrinsic sensitivity to immune-mediated killing.

The cancer cell IFN-I pathway controls immune cell 
interactions
Because a minority of cancer cells with Ifnar1 KO is sufficient to improve 
a CD8+ T cell-driven ICB response, this suggests that IFN-I signaling 
in cancer cells results in a loss of function important for T cell activa-
tion or differentiation. To investigate this notion, we examined the 
immune populations of Res 499 tumors using scRNA-seq. Surprisingly, 
this revealed that KO of Ifnar1 in cancer cells was sufficient to increase 
immune cell expression of IFNG.GS, particularly in dendritic cells (DCs) 
and myeloid cells (Fig. 6a,b and Extended Data Fig. 7a). This was accom-
panied by an increase in Ifng expression in NK cells and in CD8+ T cells 
(Fig. 6c). An increase in IFN-γ expression by CD8+ T cells was confirmed 
by flow cytometry and was particularly evident in effector-like and 
exhausted subsets (Extended Data Fig. 7b). Importantly, these increases 
in IFNG.GS and Ifng expression were observed even in the absence of 
anti-PD1 therapy, suggesting that blocking cancer cell IFN-I signaling 
alone initiates favorable changes in the immune microenvironment 
that are further enhanced by addition of anti-PD1 therapy. Thus, these 
findings suggest that inhibiting IFN-I signaling in cancer cells increases 
IFNG.GS and IFN-γ expression in immune cells.

DCs can generate critical cytokines to enhance CD8+ T cell recruit-
ment and activation30,31. The production of IFN-γ by T cells can then 
further facilitate interactions with DCs that are important for anti-PD1 
response. To determine whether the higher IFNG.GS expression 
observed in DCs and the enhanced Ifng production by CD8+ T cells 
are associated with changes consistent with enhanced interaction 
between CD8+ T cells and DCs, we used scRNA-seq data to first identify 
four major DC subtypes in Res 499 tumors, namely, DC1, DC2, DC3 and 
plasmacytoid DC (pDC), using gene sets for each DC subtype32 (Fig. 6d,e  
and Extended Data Fig. 7c). Next, we inferred cell–cell interaction 

Fig. 5 | Blocking OAS1 and IFN-I signaling in tumor cells restores CD8+  
T cell-driven response to ICB. a, Survival of mice with Res 499 WT, Res 499 
Ifnar1-KO or Res 499 Ifnar1- and B2m-double-KO tumors, either untreated or 
treated with anti-PD1 therapy. NK or CD8+ T cells were depleted with anti-NK1.1 
or anti-CD8 antibodies, respectively, or perforin−/− mice (Prf1−/−) were used to 
prevent perforin-mediated killing. Untreated WT, n = 5 mice; anti-PD1, WT, 
n = 4 mice; untreated Ifnar1-KO, n = 24 mice; anti-PD1, Ifnar1-KO, n = 24 mice; 
untreated Ifnar1- and B2m-KO, n = 5 mice; anti-PD1, Ifnar1- and B2m-KO, n = 5 
mice; untreated Ifnar1-KO, anti-NK1.1, n = 10 mice; anti-PD1, Ifnar1-KO, anti-NK1.1, 
n = 15 mice; untreated Ifnar1-KO, anti-CD8, n = 10 mice; anti-PD1, Ifnar1-KO, 
anti-CD8, n = 10 mice; untreated Ifnar1-KO Prf1−/−, n = 2 mice; anti-PD1, Ifnar1-KO 
Prf1−/−, n = 4 mice. b, Percent of tumor-infiltrating CD8+ T cells in total CD45+ cells 
from mice with Res 499 WT or Res 499 Ifnar1-KO tumors, untreated or treated 
with anti-PD1 therapy (untreated WT, n = 22 mice; untreated KO, n = 25 mice; 

anti-PD1, WT, n = 32 mice; anti-PD1, KO, n = 29 mice). c, Median fluorescence 
intensity (MFI) values of surface MHC-I expression on cancer cells from Res 499 
WT, Res 499 Ifnar1-KO, or Res 499 Ifngr1-KO tumors assessed with an anti-MHC-I 
antibody or an isotype IgG control (n = 5 biological replicates per group). d,e, Day 
15 tumor volume (d) and percent tumor-infiltrating CD8+ T cells (e) after anti-PD1 
treatment of mice injected with a mixture of Res 499 WT and Ifnar1-KO cells 
or Ifngr1-KO cells. The percentage of control to KO cells is depicted (n = 5 mice 
per group). f, GSEA of genes conferring resistance to anti-PD1-based therapy29 
comparing cancer cells sorted from Res 499 WT tumors versus cells sorted from 
either Ifnar1-KO tumors (left) or Ifngr1-KO tumors (right). Shown are normalized 
enrichment scores and P values. Heatmap depicts relative gene expression of 
the leading-edge genes. P values were determined by two-sided t-test or log-rank 
test for survival. Box plots represent the 25th percentile, the median, the 75th 
percentile and 1.5× IQR (whiskers).
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strength between the DC subsets and CD8+ T cells using CellChat33. 
For Res 499 tumors lacking IFNAR and treated with anti-PD1 therapy, 
the strongest predicted interaction was between CD8+ T cells and the 
DC3 subtype (Fig. 6f). This was driven by an increased communica-
tion probability between multiple co-stimulatory ligands on DCs with 
their receptors on CD8+ T cells, including CD86 with CD28, interleukin 
(IL)-15 with IL-5RA and IL-2RB, and 4-1BB ligand (TNFSF9) with 4-1BB 
(TNFRSF9) (Fig. 6g). The collective expression of these receptor–ligand 

pairs was augmented by tumor Ifnar1 KO and was further enhanced by 
anti-PD1 therapy (Fig. 6h and Extended Data Fig. 7d). Similar results 
were uncovered using scTensor34 (Extended Data Fig. 7e). Flow cytom-
etry confirmed that KO of Ifnar1 in Res 499 cancer cells resulted in 
higher expression of ligands such as CD86 on CD11c+ DCs (Extended 
Data Fig. 7f), and KO of host Batf3, which was expressed by the DC3 
subset (Extended Data Fig. 7c), abrogated the ability of tumor Ifnar1 
KO to restore response to anti-PD1 therapy (Extended Data Fig. 7g). 
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Thus, these data suggest that blocking IFN-I signaling in cancer cells 
promotes critical receptor–ligand interactions between CD8+ T cells 
and DC3 cells, contributing to restored immune cell IFN-γ signaling.

The cancer cell IFN-I pathway impacts CD8+ T cell state 
transition
Enhanced interactions between CD8+ T cells and DC3 cells that occur 
after cancer cell Ifnar1 KO might impact the fate of CD8+ T cells. To 
investigate this, we directed our focus to CD8+ T cells sorted from Res 
499 tumors. By scRNA-seq and trajectory analysis, six major T cell states 
were identified (Fig. 7a). Here, each T cell state was first classified as 
exhausted or non-exhausted using a core signature for PD1+ TEX cells. 
Next, the non-exhausted states were further classified into naive-like 
(Tnaive-like) and effector-like (TEFF-like) T cell subsets, while the exhausted 
states were further divided into progenitor TEX (TEX

prog1 and TEX
prog2), 

intermediate TEX (TEX
int) and terminal TEX (TEX

term) populations (Fig. 7a 
and Extended Data Fig. 8a). Analysis of select marker genes (Tox, Tcf7, 
Tbx21, Klrg1, Cx3cr1, Cxcr5, Gzmb, Mki67) supported these classifi-
cations (Extended Data Fig. 8b). For Res 499 tumors, the majority of 
intratumoral CD8+ T cells resided in the TEX

prog2 state (Fig. 7b). Upon 
anti-PD1 treatment, there was an increase in TEX

int and TEX
term cells at the 

expense of cells occupying the non-exhausted TEFF-like state, consistent 
with anti-PD1 therapy pushing TEX

prog2 cells further toward TEX
int and 

then TEX
term states. However, although the proportion of TEX

term cells 
still increased after treating mice with Ifnar1-KO Res 499 tumors with 
anti-PD1 therapy, there was a notable expansion of TEFF-like cells when 
cancer cells could not signal through IFNAR (Fig. 7b and Extended Data 
Fig. 8c). This was confirmed with flow cytometry by examining CD8+ 
T cells that were PD1lo/hiTIM3−CX3CR1+ (Extended Data Fig. 8d), which 
is a phenotype for TEFF-like cells (Extended Data Fig. 8b).

To investigate whether this enhanced transition toward an 
effector-like state is likely related to antigen specificity, we grouped 
together CD8+ T cells with T cell receptors (TCRs) that share similar 
biophysical properties in the complementarity-determining region 3 
(CDR3) (Methods), which contains the amino acids that contact antigen 
and MHC-I. This resulted in five TCR clusters after excluding cluster 4 
due to sparsity (Extended Data Fig. 8e). For each of these TCR clusters, 
we next assessed how effectively member TCR clonotypes (T cells with 
the same TCR) transition between TEFF-like and TEX states using a paired 
STARTRAC transition index (pTrans index)35. For TCR clusters 1 and 2, 
which contain among the most expanded clonotypes (Extended Data 
Fig. 8e,f), Ifnar1 KO resulted in higher pTrans index values that further 
increased after anti-PD1 therapy (Fig. 7c). This suggested that these 
TCR clusters had clonotypes that more readily transition into both 
TEFF-like and TEX states. Indeed, inspection of the top ten clonotypes in 
TCR clusters 1 and 2 from Res 499 tumors illustrated a heavily biased 
distribution toward the TEX state that became more evenly distributed 
between TEX and TEFF-like states upon Ifnar1 KO, an effect that was further 
enhanced with addition of anti-PD1 therapy (Fig. 7d). Thus, preventing 
cancer cell IFN-I signaling enables anti-PD1 therapy to push CD8+ T cells 
that may otherwise become exhausted toward effector-like states in a 
TCR-dependent, and likely antigen-dependent, manner.

Discussion
We describe how epigenetic features of cancer cells can enhance a sub-
set of IFN-I-related ISGs that ultimately hinder CD8+ T cell function and 
immunotherapy response (Fig. 7e). Our work suggests that chronic 
IFN-γ stimulation of cancer cells initiates epigenetic changes resem-
bling inflammatory memory. Here, STAT1 controls active enhancers for 
IFN-IMDs, while IRF3 maintains their chromatin accessibility even when 
IFN signaling is attenuated. These primed enhancers result in greater 
expression of ISG.RS genes such as OAS1 that amplifies the IFN-I path-
way, augmenting expression of a compendium of genes that inhibit 
immune function. This restricts the generation of IFNs by immune cells, 
interferes with productive interactions between T cells and important 
DC subsets, and results in CD8+ T cells that become exhausted rather 
than effector like. Thus, resistant cancer cells acquire inflammatory 
memory domains to drive an IFN-I-mediated feedforward process that 
sustains feedback inhibition of immune cells. Elevated expression of  
ISG.RS genes represents the acquisition of inflammatory memory by 
cancer cells, and a decrease in IFNG.GS expression relative to ISG.RS 
expression represents subsequent feedback modulation of immune cells.

The relationship between IFN-IMDs and the ability of cancer cells 
to amplify IFN-I signaling has parallels with inflammatory memory in 
epithelial cells25 and with trained immunity36. In macrophages, IFN-I 
and IFN-γ extensively remodel the epigenome through STATs and 
IRFs, leading to enhanced expression of ISGs following stimulation 
with TLR ligands13,14. In epithelial stem cells, inflammatory memory 
is associated with DNA-sensing PRRs15. We show that cancer cells that 
relapse after ICB amplify IFN-I signaling using the RNA sensor OAS1, 
which exhibits elevated expression likely due to inflammatory memory 
domains. These findings suggest that use of PRRs may be a common 
mechanism for instituting an inflammatory memory state. In Res 499 
ICB-resistant tumors, STAT1 and IRF3 establish persistent chromatin 
accessibility both genome wide and at the Oas1 locus. Here, chronic IFN 
stimulation may activate STAT1, and OAS1 or the downstream PRR RIG-I 
may activate IRF3 to reinforce inflammatory memory domains. Such a 
feedforward mechanism would then enable cancer cells to effectively 
use IFN-I to coordinate immune suppression despite diminished IFN-I 
levels resulting from immune dysfunction.

Although blocking tumor IFN-γ and IFN-I signaling both can 
restore the ICB response, interfering with these pathways can differ 
in many regards6,7. One key determinant for why blocking type I ver-
sus type II IFN can differ relates to the impact that each pathway can 
have on MHC-I expression and antigen processing. In B16 and Res 499 
tumors that have low constitutive MHC-I levels but not in tumors with 
significantly higher baseline MHC-I levels, inhibiting IFN-γ signaling 
may prevent adequate MHC-I expression7. This impairs the ability of 
CD8+ T cells to recognize tumor cells but promotes innate lymphoid 
cell killing that rejects tumors that have lost MHC-I and/or have poor 
neo-antigens7. By contrast, inhibition of IFN-I signaling in Res 499 cells 
increases MHC-I likely because the IFN-γ receptor is still present on can-
cer cells and there is an increase in IFN-γ in the tumor due to improved 
immune function afforded by blocking IFN-I signaling in cancer cells. 
This preserves direct CD8+ T cell killing, enables durable immune 

Fig. 6 | Inhibiting tumor IFN-I signaling enhances IFN signaling in immune 
cells to promote DC–CD8+ T cell interactions. a, Experimental setup and 
uniform manifold approximation and projection (UMAP) from scRNA-seq 
analysis of Res 499 tumor-infiltrating CD45+ immune cells. Cells are colored by 
immune cell type. Mono/Mac, monocyte or macrophage; neutro, neutrophil. 
b,c, Mean expression of IFNG.GS genes (b) and Ifng (c) in tumor-infiltrating 
CD45+ immune cells from mice bearing Res 499 control (WT) or Ifnar1-KO 
tumors treated with or without anti-PD1 therapy. d,e, UMAP projection of 
tumor-infiltrating CD8+ T cells and DC subtypes colored by immune cell type 
(d) and gene set enrichment for DC subtype gene sets (e) in each of the assigned 
DC clusters. Enrichment score is color coded. f, Differential cell–cell interaction 
strength between anti-PD1-treated Res 499 or Res 499 Ifnar1-KO tumors as 

shown by circle plot (left) and heatmap (right). Nodes in the circle plot represent 
DC subtypes or CD8+ T cells. Edge color represents increased or decreased 
interaction in treated Res 499 Ifnar1-KO tumors compared to treated Res 499 
WT tumors. Edge width indicates the interaction strength. The heatmap shows 
differential interaction strengths between ligand-expressing cells (rows) and 
receptor-expressing cells (columns). g,h, Communication probability (g) 
and relative expression (h) of DC3 ligands and CD8+ T cell receptors from the 
indicated Res 499 or Res 499 Ifnar1-KO tumors or from the same tumors treated 
with anti-PD1 therapy. Select ligand–receptor (L–R) pairs are highlighted, and 
only ligand receptors with a communication probability of at least 20% are 
shown. Values are scaled.
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memory, and is especially effective in combination with anti-PD1 and/
or anti-PDL1 therapy. Accordingly, as shown here and previously6, 
blocking IFN signaling with a JAK inhibitor can improve ICB.

Our data suggest that preventing IFN-I signaling even in a minority 
of cancer cells improves ICB response. This argues that IFN-I signal-
ing in cancer cells may prevent the generation of a factor needed to 
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coordinate productive anti-tumor adaptive immunity. Consistent with 
this, blocking cancer cell IFN-I signaling increases IFNG.GS expression 
in myeloid and DC populations and is predicted to enhance interactions 
between CD8+ T cells and DC3 DCs. Cytokines such as CXCL9, which is 

encoded by an IFNG.GS gene, can facilitate interactions between DCs 
and T cells31, and increased IFN-γ produced by T cells has also been 
reported to allow DCs to generate IL-12 to license T cells and improve 
anti-PD1 efficacy30. Another intriguing IFN-I-regulated ISG is Adar, 
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which restrains inflammatory signaling that can favorably shape the 
immune composition of tumors37. Thus, blocking cancer IFN-I signal-
ing may initiate a cascade of events involving the immune TME that 
ultimately impacts CD8+ T cells before commitment toward terminal 
states. Upon treatment with anti-PD1 therapy, this may allow a greater 
proportion of early CD8+ T cells to differentiate toward an effector-like 
state rather than an exhausted state.

Methods
Mice
All animal experiments were performed according to protocols 
approved by the Institutional Animal Care and Use Committee and 
the Institutional Biosafety Committee of the University of Pennsylvania. 
Five- to 7-week-old female C57BL/6 (stock 027) and BALB/c (stock 28) 
mice were obtained from Charles River Laboratory. Five- to 7-week-old 
female C57BL/6 (stock 000664), Prf1-KO (C57BL/6-Prf1tm1Sdz/J, stock 
002407) and Batf3-KO (B6.129S(C)-Batf3tm1Kmm/J, stock 013755) mice 
were ordered from Jackson Laboratory. Mice were maintained under 
specific pathogen-free conditions.

Cell lines and CRISPR gene targeting
The melanoma cell line Res 499 and the breast cancer cell line Res 
237 were derived previously from B16 and TSA cells (kind gift from 
S. Demaria, Weill-Cornell), respectively, and cultured as previously 
described16. KO of Ifnar1 was generated previously6 and Oas1a and 
Oas1g double KO was generated using px459 with the gRNA sequence 
GAGGATCAGTTAAACCGACG. The targeting gRNA was annealed, phos-
phorylated and cloned into px459. After puromycin selection, KOs of 
single-cell clones were screened by treatment with 1,000 U ml−1 IFN-β 
(PBL Assay Science) and assayed for OAS1 protein expression. The 
double KO of Ifnar1 and B2m was generated by adding an additional 
gRNA targeting B2m in Ifnar1-KO cells, treating cells with 100 ng ml−1 
IFN-γ (PeproTech), and sorting KO cells on an Aria flow cytometer. 
The gRNA sequences for B2m are g1, GACAAGCACCAGAAAGACCA; 
g2, GTGAGTATACTTGAATTTGA.

Enzyme-linked immunosorbent assay
Cells were transfected with 0.25 μg ml−1 polyI:C (InvivoGen) using 
Lipofectamine RNAiMax (Thermo Fisher Scientific). Twenty-four hours 
following transfection with polyI:C, conditioned medium was collected 
and centrifuged to remove cells. An ELISA was carried out using the 
Mouse ELISA Kit (PBL Assay Science) following the manufacturer’s 
instruction.

Real-time PCR
RNA was extracted using TRIzol, and cDNA synthesis was car-
ried out using qScript XLT cDNA SuperMix (Quantabio) with 1 μg 
RNA. Real-time PCR was performed using Power SYBR Green 
PCR Master Mix (Applied Biosystems) on the TaqMan 7900 sys-
tem (Applied Biosystems). Primer sequences for Oas1 are as 

follows: forward primer, CTCCAAGGTGGTGAAGGGTG; reverse primer, 
TGACCCAGGACATCAAAGGC.

Small interfering RNA knockdown
SMARTPOOL ON-TARGETplus non-targeting siRNA #1, IRF1, IRF3 and 
IRF7 (Dharmacon) were transfected using Lipofectamine RNAiMax 
(Thermo Fisher Scientific) at 30 nM for 24 h before gene expression 
was assessed. Knockdown was confirmed by real-time PCR.

Protein expression
A western antibody against mouse OAS1 (Santa Cruz Biotechnology) 
was used (1:1,000 dilution). For tonic expression of OAS1, cells were 
plated and protein lysate was collected 24 h later. For IFN-β-stimulated 
expression of OAS1, cells were stimulated with 1,000 U ml−1 IFN-β over-
night before protein lysate was collected.

In vivo mouse studies
Tumors cells were subcutaneously injected into flanks of mice. The 
number of cells injected were 50,000 and 100,000 for melanoma 
and breast cancer cells, respectively. Antibody treatments were car-
ried out on days 5, 8 and 11 for melanoma tumors or on days 7, 10 and 
13 for breast cancer tumors at 10 mg per kg (approximately 200 µg 
per mouse). Depletion was carried out on days −2, 0, 4, 8, 12 and 16 at 
10 mg per kg, and successful depletion was confirmed by flow cytom-
etry. Antibodies were from Bio X Cell: anti-PD1 (RMP1-14), anti-PDL1 
(10F.9G2), anti-CTLA4 (9H10). Tumor volume was determined using 
perpendicular tumor diameters measured using calipers. Volume 
was calculated using the formula L × W2 × 0.52, where L is the long-
est dimension and W is the perpendicular dimension. An event was 
defined as when tumor burden reached a protocol-specified size limit 
of 1.5 cm in the maximum dimension or developed skin ulceration 
above a protocol-specified size of 4 mm to minimize morbidity. The 
maximum permitted tumor burden was not exceeded. Prior power 
calculations using an α level of 0.05 and expected effect sizes were 
used to guide sample sizes for mouse studies.

Flow cytometry and cell sorting
Two weeks following tumor injection, tumors were harvested and 
digested with collagenase IV (EMSCO–Fisher) for 30 min at 37 °C. The 
suspension was filtered and treated with ACK lysis buffer (Quality Bio) 
for 5 min on ice. Staining was carried out first with the LIVE/DEAD Fix-
able Aqua Dead Cell staining kit (Thermo Fisher Scientific) and TruStain 
FcX (BioLegend) for 15 min at 4 °C, followed by surface antibody 
staining (1:50 dilution) for 30 min at 4 °C. Intracellular staining was 
carried out using the Foxp3/Fix/Perm kit (Thermo Fisher Scientific). 
Cell sorting was carried out on an LSR II or Aria flow cytometer when 
necessary. Fluorescently labeled anti-mouse antibodies against CD45 
(104), TCR-β (H57-597), H-2Kb/H-2Db (28-8-6), I-A/I-E (M5/114.15.2), 
F4/80 (BM8), CD11c (N418), CD86 (GL-1), TIM3 (RMT3-23) and CX3CR1 
(SA011F11) were obtained from BioLegend; those against CD8 (53-6.7), 

Fig. 7 | Inhibiting tumor IFN-I signaling promotes transition of CD8+ T cell 
clonotypes toward an effector-like state after anti-PD1 therapy. a, Cell 
activation and differentiation state trajectories from scRNA-seq analysis of 
tumor-infiltrating CD8+ T cells (top), and gene set enrichment of genes expressed 
by CD8+ T cell subsets or TEX cell subsets in each of the assigned T cell states 
(bottom). Gene set names (y axis) and T cell state labels (x axis) are shown. 
TE, terminal effector T cells; TE_EM, terminal effector and effector-memory 
T cells. States S3 and S5 were combined. b, Cell state trajectories (top) and 
frequency plot (bottom) of clonally expanded CD8+ T cells from mice with Res 
499 control (WT) or Res 499 Ifnar1-KO tumors, treated with or without anti-PD1 
therapy. Densities of cells in each labeled state are overlaid with brighter color 
representing a higher density. c, State transition potential between effector-like 
(S2) and exhausted T cell states (S4, S6, S7) for CD8+ T cell clonotypes from Res 
499 WT or Ifnar1-KO (KO) tumors, treated with or without anti-PD1 therapy. 

Quantitation is by a pTrans index (red dot, mean), in which higher values 
represent broader clonotype sharing between the two states. Clonotypes with 
TCRs having similar biophysical properties are clustered into one of the indicated 
TCR clusters. P value for differences between groups was determined by one-way 
ANOVA (bottom). P value for the indicated pairwise comparison was determined 
by Tukey’s HSD test. Top, summary of the analysis approach. d, Distribution of 
T cell states (color coded) for the most expanded clonotypes belonging to each 
TCR cluster. The outermost ring of the concentric circles represents the most 
expanded clonotype with clonotypes of decreasing frequency progressing 
inward. Only clonotypes exceeding a frequency of 0.5% are shown, up to ten 
clonotypes. The TEX phenotype state combines the S4, S6 and S7 exhausted  
T cell states. e, Summary of the relationship between ISG.RS and IFNG.GS with 
IFN-associated inflammatory memory in cancer cells, immune function, and ICB 
resistance. See text for details.
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NK1.1 (PK136), IFN-γ (XMG1.2) and perforin (eBioOMAK-D) were from 
eBioscience; that against CD8 (KT15) was from MBL International; that 
against PDL1 (MIH5) was from BD Biosciences; and those against CD11b 
(M1/70.15) and PD1 ( J43) were from Thermo Fisher Scientific. See Sup-
plementary Fig. 1 for representative gating strategies.

Assay for transposase-accessible chromatin and RNA sequencing
Single-cell suspensions were obtained as described above from 
day 15 tumors, and tumor cells were sorted by gating on live–dead 
aqua-negative and CD45-negative cells. A total of 50,000 or 200,000 
cells were sorted for ATAC-seq or RNA-seq, respectively. RNA was 
extracted using Direct-zol RNA kits (Zymo Research) with on-column 
DNase treatment. The library was prepared using the TruSeq Stranded 
Total RNA Library Prep Gold kit. ATAC-seq libraries were prepared as 
described previously38. Both libraries were sequenced on the Illumina 
HiSeq 2500 or NextSeq 500 with 75-base paired-end reads.

Cleavage under targets and release using nuclease
For both B16 and Res 499 cells, 0.5–1 × 105 cells were collected by cen-
trifugation (600g, 3 min, 4 °C) and washed twice with ice-cold wash 
buffer (20 mM HEPES-NaOH, pH 7.5; 150 mM NaCl; 0.5 mM spermidine; 
1× EDTA-free protease inhibitor cocktail). The cells were resuspended in 
1 ml wash buffer and incubated with 15 μl concanavalin A-coated beads 
(Bangs Laboratories), which were equilibrated with binding buffer 
(20 mM HEPES-KOH, pH 7.9; 10 mM KCl; 1 mM CaCl2; 1 mM MnCl2) for 
10 min with rotation at room temperature. Bead-bound cells were sepa-
rated by magnet and resuspended in 300 μl antibody buffer (20 mM 
HEPES-NaOH, pH 7.5; 150 mM NaCl; 0.5 mM spermidine; 1× EDTA-free 
protease inhibitor cocktail; 0.05% digitonin; 2 mM EDTA) containing 
3 μg of the corresponding antibodies (anti-H3K27ac, Abcam, ab4729; 
anti-H3K4me1, Abcam, ab8895; anti-H3K4me3, Abcam, ab8580; rab-
bit IgG, Sigma-Aldrich, I8140) and incubated with rotation at 4 °C 
overnight. Magnetically separated beads were washed with dig-wash 
buffer (20 mM HEPES-NaOH, pH 7.5; 150 mM NaCl; 0.5 mM spermidine; 
1× EDTA-free protease inhibitor cocktail; 0.05% digitonin) and then 
incubated with ~700 ng ml−1 pA-MNase in 300 μl dig-wash buffer at 
4 °C for 1 h. After washing twice with dig-wash buffer, the beads were 
resuspended in 150 μl dig-wash buffer and chilled on ice for 5 min. CaCl2 
was added to activate MNase cleavage at a final concentration of 2 mM 
for 30 min. The reaction was quenched with 2× stop buffer (340 mM 
NaCl, 20 mM EDTA, 4 mM EGTA, 0.02% digitonin, 50 μg ml−1 RNase A, 
50 μg ml−1 glycogen, 2 pg ml−1 heterologous spike-in DNA) at 37 °C for 
15 min. The supernatant with released chromatin was collected by 
centrifugation, and DNA fragments were extracted using the phenol–
chloroform method and used for construction of sequencing libraries.

Libraries were constructed using the NEBNext Ultra II DNA Library 
Prep Kit for Illumina with some modifications. For adaptor ligation, 
the adaptor was diluted 25-fold. For size selection of adaptor-ligated 
DNA, the ligation reaction was first incubated with 25 μl sparQ PureMag 
Beads (Quantabio) and then incubated with 45 μl beads for a second 
selection. For PCR amplification, the cycle number for different sam-
ples was chosen using the NEBNext Library Quant Kit for Illumina. 
Library concentration and size distribution was determined with the 
Qubit dsDNA HS Kit (Thermo) and the Bioanalyzer High Sensitivity DNA 
Kit (Agilent). Libraries were then sequenced using paired-end Illumina 
sequencing with 2 × 42-bp reads.

Statistics and reproducibility
For comparisons between two groups, the Wilcoxon test (two tailed) 
was used for non-parametric data, while Student’s t-test (two tailed) 
was used for parametric data. With multiple groups, ANOVA with post 
hoc Tukey’s HSD test was employed. The log-rank test was used for 
survival analysis. Normality was examined using a Shapiro–Wilk test 
and/or a Q–Q plot. Data collection and analysis were not typically 
performed blind to the conditions of the experiments. Mice were 

randomly assigned to each experimental group. No mice were excluded 
from analyses.

Integrated TCGA analysis
We downloaded the normalized ATAC-seq insertion count matrix and 
associated peak calls from the NCI Genomic Data Commons (https://
gdc.cancer.gov/about-data/publications/ATACseq-AWG). We down-
loaded batch effect-normalized pan-cancer RNA-seq data from the 
TCGA PANCAN cohort on the UCSC Xena Browser (http://xena.ucsc.
edu). To pair ATAC-seq samples with RNA-seq data, technical replicates 
were merged by taking the average accessibility at each peak. RNA and 
ATAC tumor samples were matched using converted case UUIDs. For 
the final paired dataset (n = 382), we excluded cancers of the brain 
(GBM, LGG) due to low immune infiltration and cancers with fewer 
than ten paired samples.

We inferred CD8+ T cell infiltration and activity levels through 
two complementary approaches. First, immune infiltration levels 
were inferred by CIBERSORTx. Because CIBERSORTx requires non-log 
data, the raw HTSeq-counts were TPM normalized for an appropriate 
input matrix. CIBERSORTx was run on its website (https://cibersortx.
stanford.edu), using the TPM-normalized matrix as the input mixture 
file, the LM22 matrix as the signature gene file, 100 permutations and 
with quantile normalization disabled. Second, the CD8+ T cell cytolytic 
score was calculated for each tumor sample by taking the geometric 
mean of the gene expression of the CD8+ T cell-specific markers GZMA 
and PRF1 (ref. 23). The CIBERSORTx-inferred CD8+ T cell infiltration 
level correlated strongly with the CD8+ T cell cytolytic score. We opted 
to use the CD8+ T cell cytolytic score as the measure of intratumoral 
CD8+ T cell activity.

To quantify the effect of each ISG gene set on CD8+ T cell infiltra-
tion, we employed a multiple regression model. For each cancer type, 
we fit a model using the modified z-score normalized gene expression 
of ISG.RS and IFNG.GS signatures as predictors, and the CD8+ T cell 
cytolytic score as the response variable.

Integrating RNA-seq and ATAC-seq data
To identify putative cis-REs for individual genes, we fit elastic net 
regression models using chromatin accessibility features as predic-
tors and the RNA expression of each gene of interest as the dependent 
variable. For each gene of interest, we included as features all ATAC-seq 
peaks within a 185-kb cis-regulatory window, the median size of a mouse 
topological associated domain39. We implemented model fitting and 
repeated K-fold cross validation and model selection with the R package 
caret. Because of the small number of tumors with matched RNA-seq 
and ATAC-seq data, we employed an elastic net model rather than a 
more complicated model to reduce the risk of overfitting.

Peaks with non-zero coefficient estimates and associated with 
genes with a variance explained of R2 > 0.2 were considered putative 
cis-REs. Bootstrapping peaks included in the regression model dem-
onstrated that estimated regression coefficients are robust to random 
sampling. The majority of peaks had coefficient estimates of zero and 
were filtered out. As expected, promoter peaks (defined as −2,000 to 
+1,000 bp from the TSS) exhibited high coefficients, but many distal 
peaks upstream and downstream of TSSs also exhibited high coefficient 
estimates. To account for accessible peaks contributed by immune cells 
in the set of putative ISG.RS cis-REs, regions that overlapped with a set 
of known immune-specific regulatory elements24 were filtered out.

Motif enrichment
To avoid conflating TFs with highly similar motifs, we used the 256 
non-redundant archetype motifs40 defined from clustering over 
2,000 motif PWMs from the JASPAR 2018, HOCOMOCO (version 11), 
and Taipale 2013 databases (https://www.vierstra.org/resources/
motif_clustering). We performed motif-enrichment analysis using 
HOMER findMotifsGenome.pl (‘-size 200 -len 8,10,12,18 -mask’) and the 
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individual motif PWMs from these databases. Significantly enriched 
PWMs were collapsed into archetype motifs, retaining only the most 
significant motif for each archetype.

ATAC-seq processing
Murine ATAC-seq data were processed using the ENCODE ATAC-seq 
pipeline, part of the ENCODE Uniform Processing Pipelines series 
(https://github.com/ENCODE-DCC/atac-seq-pipeline). In brief, adap-
tors were trimmed using cutadapt, and reads were aligned to the mm10 
genome using Bowtie 2. After alignment, duplicate reads and reads 
mapping to chromosome M were removed. To correct for the Tn5 offset, 
BAM file reads were shifted (‘+’ stranded +4 bp, ‘−’ stranded −5 bp). Peak 
calling was performed with MACS2, and high-confidence peaks were 
filtered using the irreproducible discovery rate, which selects for peaks 
that have consistent ranks across replicates. Overlapping peaks were 
merged across all conditions to generate a consensus peak set consist-
ing of 87,697 peaks. A raw count matrix was generated by counting the 
number of insertions that overlapped each region in the consensus 
peak set. For the final count matrix, raw counts were normalized using 
regularized log transformation from DESeq2.

RNA-seq processing
Adaptors were trimmed with cutadapt (version 1.18). Reads were 
aligned to the GRCm38 genome with STAR (version 2.5.2a) using rec-
ommended parameters. Gene-based quantification was performed 
with salmon (version 0.13.1). For the final count matrix, raw counts 
were imported using tximport and normalized using regularized log 
transformation from DESeq2.

CUT&RUN processing
Adaptors were trimmed with cutadapt (version 1.18). Reads were aligned 
to the GRCm38 genome with Bowtie 2 (version 2.3.4.1) using the param-
eters ‘–local–very-sensitive-local–no-unal–no-mixed–no-discordant–
phred33 -I 10 -X 700 -p 16’. Unmapped and improperly paired reads were 
removed (‘-F 1804 -f2’). For H3K27ac and H3K4me3 profiling, narrow 
peaks were called with MACS2 using the default significance threshold 
of P = 1 × 10−5. For H3K4me1 profiling, broad peaks were called using the 
same significance threshold. Non-overlapping, fixed-width consensus 
peak sets for each histone assay were generated by combining peak calls 
and iteratively removing overlapping peaks (only retaining the most 
significant peak call). A raw count matrix was generated by counting 
the number of insertions in each region of the consensus peak set, and 
normalized count matrices were generated with DESeq2’s vst method.

ChromVAR
Differential TF activity was examined using chromVAR. GC 
bias-corrected deviations were computed from the normalized inser-
tion count matrix generated using methods described above (see 
ATAC-seq processing). ChromVAR deviation values for PWMs belong-
ing to the same Vierstra archetype motif were averaged.

Footprinting
All samples were sequenced to an average of ~60 million aligned and 
deduplicated reads per replicate, enough for TF footprinting. TF 
footprints were identified using the footprinting tool HINT-ATAC. 
Footprints with a low-quality score were filtered. Next, TF motifs were 
scanned for within footprint regions using FIMO. TFs with multiple 
motifs were de-deduplicated by selecting the motif with the most 
significant P value. To visualize TF footprints, sequence bias of Tn5 
insertions was corrected for. To do this, hexamer sequences surround-
ing each single-base Tn5 insertion site were identified, and an observed 
hexamer frequency table was calculated. Next, an expected hexamer 
frequency table was calculated from the mm10 reference sequence. 
Finally, the observed-to-expected hexamer frequency ratio was cal-
culated to generate bias-corrected Tn5 insertion counts.

Identifying interferon-associated inflammatory memory 
domains and genes
Inflammatory memory has previously been described as chromatin 
regions that gain accessibility during acute signaling, remain accessible 
after the signal terminus and allow for an enhanced secondary response 
to stimuli. We focused our analysis on ‘IFN-IMDs’ by terminating IFN 
signaling by Stat1 KO and identifying chromatin domains that uniquely 
maintain memory in Res 499 cells. To do this formally, we modeled 
chromatin accessibility in DESeq2 using the design formula ‘~Cell Line 
+ Genotype + Cell Line: Genotype’, where Cell Line is B16 or Res 499, 
Genotype is WT or Stat1 KO and the interaction term represents the 
cell line-specific Stat1-KO effect. We used the interaction term to filter 
for STAT1-dependent chromatin domains where the Stat1-KO effect is 
smaller for Res 499 cells than for B16 cells. We then linked these memory 
domains to genes that they putatively regulate by examining all genes 
within a 92-kb cis-regulatory window and retaining only genes that had 
RNA expression moderately correlated with chromatin accessibility of 
the linked memory domain (r > 0.3). The genomic features and genes 
are provided in Supplementary Tables 1–5.

Gene set enrichment analysis
Differential gene expression analysis was carried out using DESeq2 
(version 1.24.0). GSEA was performed using fgsea (version 1.10.1).

Single-cell RNA sequencing and TCR sequencing
Tumor-infiltrating immune cells were sorted as the live–dead-negative 
and CD45+ population. Tumor-infiltrating CD8+ T cells were sorted as 
the live–dead-negative, CD45+TCR-β+CD8+ population. The sorted 
immune cells were loaded on a 10x Chromium Controller, and libraries 
were prepared using the Single Cell 5’ kit and the V(D)J Mouse T Cell 
Enrichment kit (10x Genomics) following the manufacturer’s rec-
ommendations. Libraries were sequenced on the NextSeq 500. This 
resulted in 3,000–4,000 cells for gene expression libraries with 25,000 
reads per cell and 2,000–4,000 cells for TCR libraries with 5,000 reads 
per cell. Two biological replicates were sequenced, resulting in a total 
of 29,584 cells analyzed (Res 499, 7,692 cells; Res 499 with anti-PD1 
therapy, 8,076 cells; Res 499 Ifnar1 KO, 6,758 cells; Res 499 Ifnar1 KO 
with anti-PD1 therapy, 7,334 cells).

Single-cell RNA-seq processing
The 10X Genomics Cell Ranger pipeline (version 3.0.0) was used to pro-
cess raw data: BCL files were converted to FASTQ, reads were aligned to 
the mouse genome (cellranger-mm10-3.0.0) and counted, and sparse 
matrices were converted to dense matrices. Genes that were expressed 
in fewer than 0.1% of cells, cells with fewer than 500 detected genes, and 
cells with over 10% mitochondrial reads were removed. Gene expression 
was imputed using SAVER (version 1.1.2). Downstream normalization, 
dimensionality reduction, clustering, and integration were carried out 
with Seurat (version 3.1.2). Clusters (resolution = 0.15) were identified 
by a list of known markers for immune cells.

Gene set enrichment-score analysis
Gene sets for mouse DC subsets were published32. Gene sets for CD8+ 
T cell subsets were derived as follows: we derived a core exhaustion 
signature by extracting DEGs (log2 > 5, FDR > 0.01) in CD101−TIM3−, 
CD101−TIM3+ and CD101+TIM3+PD1+ CD8+ T cells compared to naive 
CD8+ T cells41 using limma (version 3.40.6). A stem-like signature was 
generated by extracting DEGs (log2 > 5, FDR > 0.01) in CD101−TIM3−PD1+ 
compared to CD101−TIM3+ and CD101+TIM3+PD1+ and naive CD8+ T cells. 
The naive and effector signatures were generated using a separate 
RNA-seq dataset that contained naive, terminal effector (KLRG1hi-

CD127lo), memory precursor (KLRG1loCD127hi), central memory 
(CD62L+) and effector memory (CD62L−) CD8+ T cells from acute LCMV 
Armstrong infection and PD1+ stem-like (CXCR5+) and TIM3+ TEX cells 
from chronic infection41. The naive signature was derived by extracting 
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genes that were expressed in naive CD8+ T cells more than twofold 
higher than in each of the other CD8+ T cell subsets. The effector sig-
nature was derived by extracting genes that are expressed more than 
twofold higher in effector and effector memory than in each of the 
other CD8+ T cell subsets. We also used an effector signature generated 
from MC38-OVA-infiltrating CD62L−SLAMF7hiCX3CR1+CD8+ T cells42. 
Gene sets for exhausted T cell subsets were derived by extracting DEGs 
(log2 > 1.5, FDR > 0.01) in TEX

prog1 (Ly108+CD69+), TEX
prog2 (Ly108+CD69−), 

TEX
int (Ly108−CD69−) and TEX

term (Ly108−CD69+) PD1+CD8+ T cells43. GSVA 
(version 1.32.0) was then used to identify enriched gene signatures for 
DC subsets or CD8+ T cell states.

Cell–cell interaction analysis
DC and CD8+ T cell interaction analysis was carried out using scTen-
sor (version 1.0.13)34 and with CellChat (https://github.com/sqjin/
CellChat)33. All DCs and CD8+ T cells were subsetted from intratu-
moral CD45+ cells, and PCA analysis and cluster identification (reso-
lution = 0.2) were carried out. CellChat and scTensor analyses were 
performed on DC and CD8+ T cells from Ifnar1-KO tumors treated with 
anti-PD1 therapy in order to determine cell–cell interaction patterns, 
interaction strength, and ligand–receptor pairs.

Pseudotime analysis
Pseudotime analysis was carried out using Monocle 2 (ref. 44). Raw UMI 
counts from all samples were loaded as a single aggregated CellDataSet. 
A set of ordering genes were derived with the unsupervised dpFeature 
procedure from Monocle, and proliferating genes Mki67, Top2a, Cdk1 
and Cdk2 were removed. The remaining ordering genes were used to 
construct pseudotime trajectories. To identify changes in T cell states 
after anti-PD1 treatment, TCR data were integrated. Cells that did not 
contain TCR information and cells that were not well expanded (clono-
type frequency less than 0.2%) were removed from analysis.

Single-cell TCR-seq processing
The 10X Genomics Cell Ranger pipeline (version 2.2.0) was used 
to process raw data: BCL files were converted to FASTQ format, and 
reads were aligned to the mouse genome (cellranger-vdj-GRCm3
8-alts-ensemble-2.2.0) and counted. The following filtering was carried 
out: cells with TCRs that had undergone productive rearrangement, were 
full length, and contained only one TCR-α chain and one TCR-β chain 
were kept. Clonotypes were defined by the CDR3 amino acid sequence of 
the unique TCR-α and TCR-β pair, and clonotype frequency was recalcu-
lated after filtering in each biological replicate. TCR data were integrated 
with gene expression data by UMI. Only expanded clonotypes with a 
frequency exceeding 0.2% were retained for further analysis.

TCR cluster analysis
After filtering out cells that were not clonally expanded or did not 
contain exactly one TCR-α and one TCR-β, the amino acid sequences 
of the variable regions of TCR-α and TCR-β were aligned using MSA 
(version 1.15.0) and concatenated. The Atchley factor45, which summa-
rizes the physiochemical and biological properties of amino acids, was 
calculated for each position in TCR-α and TCR-β using HDMD (version 
1.2), followed by clustering using Rphenograph (version 0.99.1) with 
k = 30. Assessments of clonotype sharing between state 2 (effector 
like) and states 4, 6, and 7 combined (exhausted) were calculated using 
STARTRAC pTrans index (version 0.1.0).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing reads and processed data for Figs. 2–4 and Extended 
Data Figs. 3–5 (ATAC-seq, RNA-seq, CUT&RUN) are deposited in the 

Gene Expression Omnibus under accession number GSE219179. Raw 
sequencing reads for Figs. 6 and 7 and Extended Data Figs. 7 and 8 
(scRNA-seq and scTCR-seq) are deposited in the Sequence Read Archive 
and available under accession number PRJNA626462. RNA-seq data 
related to Fig. 5f have been previously deposited in the Gene Expres-
sion Omnibus under accession number GSE83850. Human RNA-seq 
and ATAC-seq tumor data used for Fig. 1 were derived from the TCGA 
Research Network and downloaded from the UCSC Xena Browser 
(TCGA PANCAN cohort) and the NCI Genomic Data Commons (https://
gdc.cancer.gov/about-data/publications/ATACseq-AWG), respectively. 
Source data are provided with this paper.

Code availability
Processing and analysis code related to the TCGA and mouse integrated 
epigenomic analyses is deposited in a GitHub repository at https://
github.com/jingyaqiu/ifnar_epigenome.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Relationship between ISGs and T cell activity in TCGA 
tumors. A. Schematic depicting the datasets and strategy used for the integrated 
analysis of RNA-seq and ATAC-seq data from TCGA tumor samples. B. CD8 T cell 
cytolytic activity scores (CD8 cytolytic activity) for all TCGA tumors, ordered by 
increasing median score (red line) for each cancer type. Cancer types with grey 
labels were excluded from analysis due to known low immune infiltration or low 

numbers of samples with paired RNA and ATAC data. C. Standardized regression 
coefficient estimates representing the effect of modified Z-score normalized 
RNA expression of IFNG.GS, ISG.RS, or 250 random gene sets (n = 38, same size 
as ISG.RS gene set) on CD8 T cell cytolytic activity. D. Histogram of number of 
putative cis-regulatory elements linked to each ISG.RS gene.
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Extended Data Fig. 2 | OAS1 cis-regulatory elements in TCGA tumors. A-C. 
ATAC tracks at the OAS1 loci for representative LUAD, LUSC, and STAD tumors 
with high (blue) or low (red) CD8 T cell cytolytic activity. The annotation bar 
(bottom) demarcates called peaks, with black and grey bars indicating putative 
cis-REs linked to OAS1 and other peaks in the region, respectively. Highlighted 

peaks indicate putative cis-REs that negatively correlate with CD8 T cell cytolytic 
activity. The correlation of average OAS1 cis-RE chromatin accessibility with CD8 
T cell cytolytic activity across all paired tumor samples available for each cancer 
type is depicted in Fig. 1i.
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Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-022-00490-y

Extended Data Fig. 3 | Activated enhancers in ICB-resistant cancer cells. 
A. Spearman pairwise correlation of RNA and ATAC libraries. Heatmap is 
hierarchically clustered. B. PCA of H3K4me3, H3K27ac, and H3K4me1 signals for 
B16 and Res 499 cells with or without Stat1 knockout (SKO) sorted from in vivo 
tumors (n = 2 mice per group). C. Strategy for integrated annotation of putative 
regulatory elements. D. Summary profiles of H3K4me3, H3K27ac, and ATAC 
signal intensity over activated or deactivated promoters and enhancers (n = 2 
mice per condition for H3K4me3 and H3K27ac assays; n = 5 mice per condition 
for ATAC assay). E. Genomic regions where Res 499 activated or deactivated 
regulatory elements reside. Only regulatory elements with significant 
differences in H3K27ac, H3K4me3, or ATAC signal intensity are included 
(FDR < 0.05). F. Example tracks for activated enhancers in Res 499 that are either 
pre-existing (left) or de novo activated (right). G. Enriched PANTHER pathways 
for genes located within a 50 Kb cis-regulatory window of Res 499 activated 

enhancers. P-values determined by Fisher’s exact test and FDR calculated 
by the Benjamini-Hochberg procedure. All pathways shown are significant 
with FDR < 0.01. H. Chromatin accessibility of the subset of Res 499 activated 
enhancers induced by chronic IFNG signaling (900 out of 3,738 enhancers) in 
cancer cells sorted from the indicated in vivo tumors (n = 3 mice per condition), 
where each row represents a chronic IFNG-induced enhancer. Summary 
enrichment scores for these loci are shown in Fig. 2i. B16 tumors were treated 
with IFNG in vitro for 6 hours (acute) or 3.5 weeks (chronic) prior to implantation 
into syngeneic mice. I. Enrichment of archetype motifs in Res 499 activated 
enhancers that are chronic IFNG-induced or not. P-values are color-coded and 
larger circle sizes indicate greater significance. TF motifs highlighted in red 
are associated with IFN signaling, TF motifs highlighted in blue are associated 
with inflammatory memory. J. Normalized ATAC-seq insertion counts at DNA 
footprints with ISRE motifs in B16 or Res 499 cells.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Features of IFN-associated inflammatory memory 
and resolved domains. A. Density histogram representing the distribution of 
H3K27ac, H3K4me1, or ATAC signal intensity at individual Res 499 activated 
enhancers in cancer cells from B16 or Res 499 WT or Stat1 KO tumors. Dotted line 
indicates the mean signal intensity of all activated enhancers for the specified 
condition. P-values determined using the summary enrichment scores for 
each condition, and a one-way ANOVA with post-hoc Tukey HSD to calculate 
significance of pairwise comparisons. B. Top GO Biological Processes terms 
enriched in genes linked to resolved domains. C. Summary enrichment scores 
of H3K27ac, H3K4me1, or ATAC signal at resolved domains in cancer cells sorted 
from the indicated in vivo tumors (n = 2 mice per condition for H3K27ac and 
H3K4me1 assays; n = 5 mice per condition for ATAC assay). D. Representative 

track for H3K27ac, H3K4me1, and ATAC signal at an IFN-associated inflammatory 
memory domain (IFN-IMD) (more examples shown in Fig. 3c). Red bars highlight 
the IFN-IMD domain where persistent memory features specific to Res 499 
tumors are revealed by Stat1 KO. E. Summary gene set enrichment scores for the 
IFN-associated inflammatory memory gene signature from cancer cells sorted 
from the indicated in vivo tumors. B16 tumors were treated with IFNG in vitro for 
6 hours (acute) or 3.5 weeks (chronic) prior to implantation into syngeneic mice 
(n = 3 mice per condition). P-values determined by two-sided t-test. F. Log2 fold 
change in RNA expression between Res 499 and B16 tumors for individual genes 
in the specified gene set. Coral color indicates an inflammatory memory gene 
that is summarized in Fig. 3f.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | OAS1 regulates IFN-I signaling and IRF3 maintains 
accessibility of activated enhancers in ICB-resistant cancer cells. A. Ifnb 
expression in tumor infiltrating CD45+ immune cells from mice with Res 499 WT 
or Ifnar1 KO (IFNAR KO) tumors, treated with or without anti-PD1 (n = 29,584 cells 
from 2 biological replicates per condition). P-values determined by two-sided 
Wilcoxon test. B. RNA expression of OAS1 in B16 and Res 499 cells in vitro (n = 5 
per condition). P-values determined by two-sided t-test. C-D. Protein (C) and 
RNA (D) expression of OAS1 in TSA and ICB-resistant Res 237 breast cancer cells 
in vitro (RNA, n = 6 per group). Replicate samples are shown in the protein blot. 
P-values determined by two-sided t-test. E. Protein expression of OAS1 in Res 499 
WT and Oas1 KO cells. Shown is representative of two technical repeats. F. Protein 
expression of OAS1 following IFNB (1000 U/ml) stimulation in Res 237 control 

(CTRL) and Res 237 Oas1 KO clones (cl2, 4, 15). Shown is representative of two 
technical repeats. G. Concentration of IFNA and IFNB after polyI:C transfection 
of TSA, Res 237 (R237), and Res 237 Oas1 KO clones (cl2, cl4) (TSA, n = 8; Res 237, 
n = 8; cl2, n = 7; cl4, n = 4 biological replicates). P-values determined by two-
sided t-test. H. Oas1 expression in Res 499 control (CTRL) or Res 499 Stat1 KO 
cells in vitro (left; Res 499 CTRL, n = 10; Res 499 Stat1 KO) or in Res 499 Stat1 KO 
cells following siRNA knockdown of control RNA (siCTRL) or the indicated IRFs 
(right; n = 10; siCTRL, n = 10; siIRF1, n = 7; siIRF3, n = 10, siIRF7, n = 7, siIRF9, n = 7). 
P-values determined by two-sided t-test. I. Chromatin accessibility of individual 
Res 499 activated enhancers in cancer cells sorted from the indicated in vivo 
tumors. Boxplots represent the 25th percentile, median, 75th percentile, and 1.5x 
IQR (whiskers).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Blocking cancer cell IFN-I signaling increases the 
frequency of tumor-infiltrating CD8 T cells and improves ICB response. A. 
Survival of mice with Res 237 WT or Oas1 KO (KO) tumors either non-treated (NT) 
or treated with anti-CTLA4 (aCTLA4) (NT, n = 10 mice per condition; aCTLA4, 
n = 20 mice per condition). Two independent KO clones are shown. P-values 
determined by two-sided log-rank test. B. Percent of tumor infiltrating CD8 
T cells in total CD45+ cells from mice with Res 237 WT or Res 237 Oas1 KO (KO) 
tumors. P-values determined by two-sided t-test. C. MHC-I surface expression 
at baseline and after either IFNB or IFNG treatment of the indicated cell lines to 
assess knockout of B2m and/or Ifnar1 in Res 499 cancer cells. D. Tumor volume 
growth of mice injected with Res 499 tumors and treated with anti-CTLA4 plus 
anti-PD1 (dICB), delayed administration of the JAK inhibitor ruxolitinib ( JAKi), 

or both (NT and JAKi, n = 5 mice per condition; dICB and JAKi + dICB, n = 10 mice 
per condition). P-values determined by a mix-effect regression model. E. Percent 
of PRF1+ CD8 T cells relative to total CD8 T cells in Res 499 WT or Res 499 Ifnar1 
KO (KO) tumors from mice treated with or without anti-PD1 (aPD1) (n = 5 mice 
per group). P-values determined by two-sided t-test. F-G. Survival of mice with 
B16 WT or Ifnar1 KO (KO) tumors (F), or CT26 WT or Ifnar1 KO (KO) tumors (G), 
either non-treated (NT) or treated with anti-PD1 (NT, n = 5 mice per condition; 
aPD1, n = 10 mice per condition). P-values determined by two-sided log-rank test. 
H. Representative density plot of peripheral CD45+ cells in control mice or mice 
treated with anti-CD8 or anti-NK1.1 depleting antibody. I. Data shown in Fig. 5a 
replotted to emphasize effect of host immune cell status. Boxplots represent the 
25th percentile, median, 75th percentile, and 1.5x IQR (whiskers).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Blocking cancer cell IFN-I signaling improves immune 
cell IFNG signaling and predicted interactions between DCs and CD8 T 
cells. A. Distribution of Ifng and IFNG.GS expression in tumor infiltrating CD45+ 
immune cells from mice with Res 499 WT or Ifnar1 KO (KO) tumors treated with 
or without anti-PD1 (aPD1) (n = 29,584 cells from 2 biological replicates per 
condition). P-values determined by two-sided Wilcoxon test. B. Percent CD8 T 
cells expressing IFNG by flow cytometry (left; n = 13 mice per group) or average 
expression of Ifng in CD8 T cell subsets by scRNA-seq (right) from the indicated 
tumors either non-treated (NT) or treated with anti-PD1. P-values determined by 
two-sided t-test. For heatmap of Ifng expression, boxed values in second column 
indicate p < 0.05 for comparison between WT vs. Ifnar1 KO, and boxed values in 
fourth column are for WT + aPD1 vs. Ifnar1 KO + aPD1. C. Average expression of 
select markers for indicated DC subtype clusters shown in Fig. 6d. D. Average 

expression of DC3 ligands and CD8 T cell receptors from the receptor-ligands 
shown in Fig. 6h. The cell types are annotated in the UMAP on the left. E. Cell-cell 
interaction scores (left) and ligand-receptor interactions (right) between CD8 
T cells and DC3 using scTensor. Data are from mice bearing Res 499 WT or Ifnar1 
KO tumors treated with or without anti-PD1. Cell-cell interaction scores and the 
mean (red dot) are from biological replicates. P-value determined by a one-way 
ANOVA for differences between groups. F. Surface expression of CD86 on MHC-
II+ CD11c+ DCs from Res 499 WT or Ifnar1 KO tumors (n = 9 per condition). P-values 
determined by two-sided t-test. G. Survival of wildtype (WT) or Batf3−/- mice 
with Res 499 Ifnar1 KO cells treated with or without anti-PD1 (WT mice NT, n = 5; 
WT mice aPD1, n = 10; Batf3 -/- mice NT, n = 3; Batf -/- mice aPD1, n = 7). P-values 
determined by two-sided log-rank test. Boxplots represent the 25th percentile, 
median, 75th percentile, and 1.5x IQR (whiskers).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Blocking cancer cell IFN-I signaling alters features of 
tumor-infiltrating CD8 T cells. A-B. Expression of CD8 T cell gene sets (A) and 
average expression of select markers (B) used to annotate CD8 T cell states shown 
in Fig. 7a. C. Percentage CD8 T cells occupying each state for each biological 
replicate (n = 2 mice per condition). Black dot represents mean. D. Percent of 
CX3CR1+ effector-like T cells relative to TIM3- CD8 T cells in Res 499 WT or Res 499 
Ifnar1 KO (KO) tumors from mice treated with or without anti-PD1 (aPD1) (n = 10 
mice per condition). E-F. UMAP of CD8 T cell clonotypes clustered by biophysical 

features of TCR CDR3 amino acids (E) and the distribution of expanded T cell 
clonotypes across TCR clusters (F) in Res 499 WT or Res 499 Ifnar1 KO (KO) 
tumors from mice treated with or without anti-PD1. In the UMAP, TCR clusters 
are color-coded and circle size indicates clonotype frequency. In the bar plot, 
each bar is one unique clonotype stratified by TCR cluster, with the height of 
the bar representing the reciprocal of the rank order by clonotype frequency 
(higher values indicate greater clonotype expansion). Boxplots represent the 25th 
percentile, median, 75th percentile, and 1.5x IQR (whiskers).
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