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OBJECTIVES: Multiple organ failure in critically ill patients is associated with poor 
prognosis, but biomarkers contributory to pathogenesis are unknown. Previous 
studies support a role for Fas cell surface death receptor (Fas)-mediated apop-
tosis in organ dysfunction. Our objectives were to test for associations between 
soluble Fas and multiple organ failure, identify protein quantitative trait loci, and 
determine associations between genetic variants and multiple organ failure.

DESIGN: Retrospective observational cohort study.

SETTING: Four academic ICUs at U.S. hospitals.

PATIENTS: Genetic analyses were completed in a discovery (n = 1,589) and 
validation set (n = 863). Fas gene expression and flow cytometry studies were 
completed in outpatient research participants (n = 250).

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: In discovery and validation sets 
of critically ill patients, we tested for associations between enrollment plasma 
soluble Fas concentrations and Sequential Organ Failure Assessment score on 
day 3. We conducted a genome-wide association study of plasma soluble Fas 
(discovery n = 1,042) and carried forward a single nucleotide variant in the FAS 
gene, rs982764, for validation (n = 863). We further tested whether the single nu-
cleotide variant in FAS (rs982764) was associated with Sequential Organ Failure 
Assessment score, FAS transcriptional isoforms, and Fas cell surface expression. 
Higher plasma soluble Fas was associated with higher day 3 Sequential Organ 
Failure Assessment scores in both the discovery (β = 4.07; p < 0.001) and valida-
tion (β = 6.96; p < 0.001) sets. A single nucleotide variant in FAS (rs982764G) 
was associated with lower plasma soluble Fas concentrations and lower day 3 
Sequential Organ Failure Assessment score in meta-analysis (–0.21; p = 0.02). 
Single nucleotide variant rs982764G was also associated with a lower relative 
expression of the transcript for soluble as opposed to transmembrane Fas and 
higher cell surface expression of Fas on CD4+ T cells.

CONCLUSIONS: We found that single nucleotide variant rs982764G was asso-
ciated with lower plasma soluble Fas concentrations in a discovery and validation 
population, and single nucleotide variant rs982764G was also associated with 
lower organ dysfunction on day 3. These findings support further study of the Fas 
pathway as a potential mediator of organ dysfunction in critically ill patients.

KEY WORDS: Fas cell surface death receptor (Fas, CD95); organ dysfunction 
scores; quantitative trait loci; single nucleotide variant; sepsis; soluble Fas

Four million patients are admitted annually to the ICU, and mortality is 
conservatively estimated at 12% (1). Often, systemic organ dysfunction 
precedes death in the ICU, with mortality rates greater than 60% when 

three or more organs simultaneously fail (2, 3). Dysregulated cell death due 
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to excessive apoptosis, or programmed cell death, has 
been implicated in the development of organ failure in 
the ICU, including acute respiratory distress syndrome 
(ARDS), acute kidney injury (AKI), sepsis, and mul-
tiple organ dysfunction syndrome (4–7).

Fas is a type 1 membrane receptor, which medi-
ates apoptosis through binding Fas ligand (FasL)  (8). 
Soluble Fas (sFas) is a truncated form of Fas believed to 
result from alternative messenger RNA (mRNA) splic-
ing through skipping of exon 6 of FAS that encodes the 
transmembrane domain (9–12). The Fas pathway is 
thought to affect both immune modulation via apop-
tosis of leukocytes and end-organ damage via apoptosis 
of epithelial cells (13–16). Observational studies have 
shown that higher levels of sFas are associated with 
poor outcomes in ARDS (4, 17, 18). Studies in critically 
ill cohorts have shown that common genetic polymor-
phisms in the FAS-/FASL-related genes are associated 
with ARDS susceptibility and development of AKI in 
ICU populations (19, 20). Thus, previous association 
studies show a link between the Fas/FasL system and 
organ dysfunction. However, protein quantitative trait 
loci (pQTL) for sFas have not been identified. If these 
loci are discovered, associations between them and 
multiple organ dysfunction could be used for future 
causal analyses between sFas and organ dysfunction.

In this study, we conducted a genome-wide asso-
ciation study (GWAS) in a multicenter discovery set 
to determine single nucleotide variants (SNVs) as-
sociated with sFas levels. Then, using the strongest 
candidate SNV within the FAS gene, we tested the hy-
pothesis that lower sFas concentrations are associated 
with organ dysfunction in the ICU, as measured by 
Sequential Organ Failure Assessment (SOFA) score on 
day 3 (21). We then replicated our findings in an ex-
ternal validation set.

MATERIALS AND METHODS

Detailed methods are available in the Supplemental 
Methods (http://links.lww.com/CCM/G857).

Discovery set (Identification of SNPs Predisposing 
to Altered ALI Risk [iSPAAR] consortium). Subjects  
(n = 1,589) were all critically ill with genome-wide 
genotyping data and clinical variables that are pub-
licly available (22). The parent study included only 
Caucasian subjects to reduce confounding due to 
population stratification. For a subset of subjects  
(n = 1,042), plasma was obtained within 48 hours of 

enrollment. For a partially overlapping subset of patients 
(n = 1,072), an adjusted SOFA score (21) excluding the 
Glasgow Coma Scale (GCS) component was available 
(Fig. S1, http://links.lww.com/CCM/G857).

Validation set (Harborview Medical Center systemic 
inflammatory response syndrome [SIRS]). Critically ill 
patients (n = 863) were prospectively enrolled after meet-
ing criteria for the SIRS (23). Subjects were Caucasian, 
and blood was obtained within 24 hours of ICU admis-
sion. All subjects had a SOFA score, and the GCS com-
ponent was excluded to match the discovery set.

Our primary outcome measurement was day 3 
SOFA score without the GCS component in subjects 
who survived to day 3. We chose this outcome because 
we hypothesized, given prior findings, that sFas might 
participate in altering risk for organ dysfunction such 
as respiratory and renal failure. We chose a time point 
that occurred after plasma sample acquisition but rel-
atively proximal to the sampling to minimize noise 
from secondary events and interventions.

Genotyping

Discovery subjects were genotyped using the Illumina 
Human 660W-Quad BeadChip (San Diego, CA). We 
removed SNVs with a minor allele frequency less than 
0.03, an overall call rate less than 90%, and for deviation 
from Hardy-Weinberg Equilibrium (p < 0.001) (24). This 
resulted in 488,966 SNVs. Imputation was performed 
via the Michigan Imputation Server with 1000 Genomes 
Project phase 3 data as the reference panel (25, 26).  
We additionally analyzed imputed SNVs within 10 kB 
of the 5′ and 3′ end of the FAS gene. Validation sub-
jects were genotyped for the SNV rs982764 by Taqman 
polymerase chain reaction (PCR)  (ThermoFisher 
Scientific, Waltham, MA).

Plasma sFas Measurements

We measured plasma sFas protein concentrations 
using an antibody-based assay (Meso Scale Discovery, 
Gaithersburg, MD).

Quantitative Reverse Transcriptase PCR 

Healthy subject mRNA cohort: We recruited healthy 
subjects, and genotyping was performed on the Illumina 
Human 1M beadchip array (San Diego, CA) (27).  
RNA was purified from unstimulated whole blood. 
We selectively performed SYBR green quantitative 

http://links.lww.com/CCM/G857
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reverse transcriptase PCR in all subjects homozygous 
for the minor allele rs982764G (n = 17), heterozygotes  
(n = 20), and major allele homozygotes (n = 25). Two 
distinct forward primers were used for the isoforms 
containing exon 6 (membrane Fas) and for skipping 
exon 6 (sFas). The same reverse primer was used for 
both isoforms. The relative expression of sFas to Fas 
was calculated as 2–(∆Ct sFas–Fas).

Flow Cytometry

Benaroya Research Institute (BRI) cohort: Subjects  
(n = 188) were genotyped on the Illumina ImmunoChip 
(San Diego, CA). Subjects were healthy or had diabetes. 
Peripheral blood mononuclear cells were stained with 
fluorophore-conjugated monoclonal antibodies against 
CD3, CD8, CD4, CD45RA, CD19, CD62L, and Fas 
(CD95) (28–30). Hierarchical gating schemes are shown 
in Figure S2 (http://links.lww.com/CCM/G857).

Data Analysis

In the discovery and validation sets, we tested for asso-
ciations between log10-transformed sFas concentration 
and day 3 SOFA without GCS in subjects who survived 
to day 3 by multivariate linear regression adjusting for 
age, gender, and sepsis (sepsis-2 definition).

In the discovery GWAS, we used linear regression to 
test for associations with each variant and log10-trans-
formed plasma sFas concentration, using an additive 
model adjusting for age, gender, sepsis, and the first three 
principal components of ancestry (PCAs). In the valida-
tion phase, we tested for associations between rs982764 
and log10-transformed plasma sFas concentration adjust-
ing for age, gender, and sepsis. We did not adjust for 
PCAs as no genome-wide data are available for this set. 
Genetic association testing was performed using Golden 
Helix SNP & Variation Suite (Bozeman, MT).

We further tested for associations between 
rs982764 genotype and sFas threshold cycle (Ct)/Fas 
Ct ratio in the healthy subject mRNA cohort and me-
dian florescent intensity of Fas on memory CD4+ T 
cells, B cells, or CD8+ long-term effector memory 
cells in the Benaroya Research Cohort. Linear re-
gression analyses using an additive genetic model 
were performed using Stata 14 (Stata LP,  College 
Station, TX). Except for the GWAS (significant  
p < 1 × 10–8), a p value of less than 0.05 was considered 
significant.

All studies were approved by human subject com-
mittees at the respective institutions (University of 
Washington institutional review board [IRB] number 
1389, 3181, 37361 and BRI IRB number 07109).

RESULTS

Subjects in both the discovery and validation were 
predominantly male (58% and 63%, respectively) and 
middle aged (mean age 58 ± 17 and 55 ± 16) (Table 1). 
Sepsis was the predominant form of critical illness 
(76% and 71%, respectively). Subjects in the discovery 
set were on average more severely ill at admission than 
the validation set (mean Acute Physiology and Chronic 
Health Evaluation III score of 78 and 65, respectively). 
Subjects in the discovery set had a higher proportion of 
ARDS (64%) and higher persistent systemic organ dys-
function (mean day 3 SOFA of 5). Clinical character-
istics of subjects within each area of the Venn diagram 
shown in Figure S1 (http://links.lww.com/CCM/G857) 
(i.e., genotyped, plasma sFas only, SOFA only) were 
similar (Table S1, http://links.lww.com/CCM/G857). 
The mean (± sd) plasma sFas concentrations were 
11,082 (± 7,265) pg/mL and 13,419 (± 7,670) pg/mL  
in the discovery and validation sets, respectively.

Plasma sFas and Organ Dysfunction

In the discovery set, we found that a one log10 unit 
increase in plasma sFas concentration was associ-
ated with a 4.40 point (95% CI, 3.53–5.28; p < 0.001) 
higher day 3 SOFA score (Table 2). This finding was 
also seen in the validation set, with one log10 unit 
change in sFas concentrations associated with a 6.96 
point (95% CI, 5.95–7.97; p < 0.001) (Table 2) higher 
day 3 SOFA score. Plasma sFas was broadly associated 
with higher organ dysfunction including coagulation 
(Fig. 1A), renal (Fig. 1B), and liver (Fig. 1C), cardi-
ovascular (Fig. S3, http://links.lww.com/CCM/G857), 
in both the discovery and validation sets (Fig. 1D–F)  
(Fig. S3, http://links.lww.com/CCM/G857) (all  
p < 0.001). Respiratory organ dysfunction was not asso-
ciated with higher sFas level in the discovery set (Fig. S3,  
http://links.lww.com/CCM/G857) (p = 0.06), possibly 
due to the fact the degree of respiratory dysfunction 
was skewed toward higher values in this group. These 
results demonstrate robust associations between higher 
plasma sFas and higher systemic organ dysfunction in 
critically ill patients.

http://links.lww.com/CCM/G857
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TABLE 2. 
Multivariate Analysis of Soluble Fas Association With Sequential Organ Failure 
Assessment Score

Soluble Fas (log10 [pg/mL]) n
Unadjusted β  

(95% CI) p
Adjusted βa  

(95%CI) p

Discovery 525 4.40 (3.53–5.28) < 0.001 4.07 (3.13–5.01) < 0.001

Validation 579 7.11 (6.10–8.12) < 0.001 6.96 (5.95–7.97) < 0.001

a�Adjusted for age, gender, and sepsis.

TABLE 1. 
Subject Characteristics

Characteristic

Discovery Validation

Genotyped  
(N = 1,589)

Genotyped  
(N = 863)

Patient age, mean ± sd 58 ± 17 55 ± 16

Male patients, n (%) 928 (58) 543 (63)

Caucasian, n (%) 1,589 (100) 863 (100)

Source of critical illness, n (%)   

  Sepsis 1201 (76) 612 (71)

  Trauma 110 (7) 0

  Other 278 (17) 251 (29)

Acute Physiology and Chronic Health Evaluation III score, mean ± sd 78 ± 27 65 ± 25

Comorbidities, n (%)   

  Diabetes 381 (24) 228 (26)

  Cirrhosis 74 (5) 90 (10)

  End-stage renal disease 73 (5) 22 (3)

Acute respiratory distress syndrome, n (%) 1,022 (64) 231 (27)

Sequential Organ Failure Assessment, mean ± sd 5.2 ± 2.8 2.7 ± 2.6

Plasma soluble Fas (pg/mL), mean ± sd 11,082 ± 7,265 13,419 ± 7,670

Mortality, n (%) 281 (18) 120 (14)

SNVs and Plasma sFas

No SNV reached genome-wide significance in 
the GWAS of plasma sFas levels in the discovery 
set (Table S2, http://links.lww.com/CCM/G857).  
The quantile-quantile plot did not suggest residual 
confounding (Fig. S4, http://links.lww.com/CCM/
G857). Although not genome-wide significant, one 
of the strongest associations was observed with an 
SNV located within an intron of FAS (rs982764; 
p = 1.81 × 10–5) (Fig. S5, http://links.lww.com/
CCM/G857). The minor allele for rs982764 was as-
sociated with lower sFas levels (additive model,  
β = –0.05) (Fig. 2A). The SNV with the strongest association 

with sFas levels was rs11663956 in LAMA1, encod-
ing Laminin α1 (Table S2, http://links.lww.com/CCM/
G857). The third most highly associated SNV (rs820371; 
p = 5.6 × 10–6) was located within an intron of MYLK.  
We focused on the variants within the FAS gene given 
that these variants could represent cis-pQTL and, thus, 
have high biologic plausibility. We sought to more 
finely map the peak association within FAS using 
densely imputed SNVs, but the peak of association 
remained at rs982764 (Fig. S6, http://links.lww.com/
CCM/G857). An imputed, intronic SNV was equiva-
lently associated (rs7911226) and was in perfect link-
age disequilibrium (R2 = 1.0; D′ = 1.0) with rs982764. 
In a sensitivity analysis limiting to subjects with sepsis  

http://links.lww.com/CCM/G857
http://links.lww.com/CCM/G857
http://links.lww.com/CCM/G857
http://links.lww.com/CCM/G857
http://links.lww.com/CCM/G857
http://links.lww.com/CCM/G857
http://links.lww.com/CCM/G857
http://links.lww.com/CCM/G857
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(n = 681), rs982764 remained associated with lower 
plasma concentrations (log10-transformed) of sFas  
(β = –0.05; 95% CI, –0.03 to –0.07; p = 2.47 × 10–4). 
Similarly, in the validation set, each copy of the minor 
allele was associated with lower plasma sFas (β = –0.04; 
p = 0.009) (Fig. 2B).

SNV and Organ Dysfunction

We then tested for associations between rs982764 
and organ dysfunction. We found that in an addi-
tive model that the minor allele (G) of rs982764 
trended toward lower day 3 SOFA score in both the 

Figure 1. Plasma soluble Fas (sFas) concentrations and associations with Sequential Organ Failure Assessment (SOFA) organ 
dysfunction. Plasma sFas concentrations by SOFA score for the discovery set for coagulation (A), renal (B), and liver (C) components. 
Validation set plasma sFas concentrations by coagulation (D), renal (E), and liver (F) components. p values shown are from linear 
regression. Whiskers extend from 10th to 90th percent value, and box ranged from the 25th to 75th percentile with line at the median.
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discovery (β = –0.25; 95%  
CI, –0.49 to 0.00; p = 0.056) 
and validation (β = –0.18; 
95% CI, –0.45 to 0.10) 
sets (Table 3). In a pooled 
meta-analysis, the minor 
allele of rs982764 was as-
sociated with lower day 3 
SOFA scores (β = –0.21; 
95% CI, –0.40 to –0.03;  
p = 0.02) (Table 3).

SNV, Alternative 
Splicing, and Fas Cell 
Surface Expression

We wanted to test splice 
variation as a potential 
mechanism for the asso-
ciation between rs982764 
and plasma sFas and used 
two additional cohorts 
with mRNA and flow 
cytometry data available. 
First, we tested whether 
rs982764 was associated 
with differences in FAS 
mRNA isoform propor-
tions. Differential expres-
sion of FAS mRNA splice 
variants due to rs982764 
could lead to differences 
in sFas production. We 
used PCR assays to detect 
FAS mRNA splice vari-
ants with exon 6 (exon 
5-6-7) or that skip exon 6 
(exon 5-7, skip 6). Exon 6 
is the region encoding the 
transmembrane domain, 
and exclusion of exon 6 
is thought to produce the 
soluble form of Fas (sFas) 
(9, 10). We compared the 
relative expression of the 
two isoforms by rs982764 
genotype in mRNA from 
whole blood obtained 

Figure 2. rs982764 and relationship to Fas. Genotype rs982763G is associated with lower 
plasma soluble Fas (sFas) in the discovery (A) and validation (B) sets. Number of subjects of 
each rs982764 genotype (AA, AG, GG) is shown on the x-axis. Whiskers extend from 10th to 
90th percent value, and box ranged from the 25th to 75th percentile with line at the median. 
p value represents multiple linear regression adjusted for age, gender, and sepsis using an 
additive genetic model. C, RNA was collected from unstimulated whole blood samples from 
healthy controls of differing genotype. Quantitative reverse transcriptase-polymerase chain 
reaction RNA was performed for transcripts containing exon 6 (membrane bound “Fas”) and 
skipping exon 6 (sFas). The relative expression of sFas to Fas was calculated as 2–(∆Ct sFas–Fas). 
Median florescent intensity (MFI) of cell surface FAS on memory CD4+ T cells (D), B cells (E), 
and long-term effector memory (LTEM) CD8+ T cells (F). p values are for linear regression 
using an additive genetic model ΔCt = difference in cycle threshold values..
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from a cohort of healthy subjects. We found that the 
minor allele of rs982764 was associated with lower rel-
ative expression of the isoform that excludes exon 6  
(p < 0.05) (Fig. 2C) which supports the hypothesis 
that the G allele of rs982764 reduces sFas production 
through altered RNA splicing.

Next, we tested whether the minor allele of rs982764 
was associated with cell surface expression of Fas in a 
second cohort of subjects with available flow cytometry 
data for circulating leukocytes. We found that surface 
expression of Fas measured by mean florescent inten-
sity (MFI) was higher on CD4+ T cells for each copy of 
the minor allele of rs982764 (Fig. 2D). These findings 
provide further support for the hypothesis that the 
minor allele of rs982764 leads to lower circulating sFas 
through altered isoform ratios favoring production of 
transmembrane Fas. We did not observe a significant 
difference in cell surface Fas expression on B cells and 
long-term effector memory CD8+ T cells by rs982764 
genotype (Fig. 2, E and F, respectively).

DISCUSSION

Our studies extend prior work demonstrating a strong 
association between higher circulating sFas and more 
severe organ dysfunction in critically ill patients and 
provide the first evidence of a quantitative trait loci 
(QTL) for plasma levels of sFas in acute critical ill-
ness. We showed that this QTL is marked by rs982764, 
a SNV located in the intron 4-5 in FAS. It is associ-
ated with both decreased levels of plasma sFas and 
lower levels of organ failure in meta-analyses in these 
cohorts. These findings provide evidence supporting 
associations between sFas and organ failure in criti-
cally ill patients.

Our findings that higher plasma sFas is associ-
ated with increased organ dysfunction as measured 

by SOFA score is consistent with previous studies of 
AKI, ARDS, and multiple organ dysfunction syn-
drome (18–20, 31). We have previously shown that 
sFas concentrations are associated with a distinct form 
of nonresolving AKI in studies that employed the set 
used here for validation (32). Although we observed 
robust associations between sFas and organ dysfunc-
tion in both the discovery and validation sets, we did 
not find an association between sFas and respiratory 
failure in the discovery set. This exception is notable 
given our own work showing that other genetic vari-
ants in FAS associate with risk for ARDS (19). These 
previously published variants in FAS were not associ-
ated with lung injury in this discovery cohort. We pos-
tulate that our finding in the discovery set could be due 
to the very different overall proportion of subjects with 
severe respiratory failure at the time of enrollment and, 
thus, potential differences in timing of sample acqui-
sition relative to onset of organ failure. Future studies 
will need to clarify the temporal relationship between 
the onset of the cause of critical illness (e.g., pneu-
monia, trauma) and sFas levels and, in turn, organ 
failure onset.

Our finding that the variants within FAS are strongly 
associated with circulating sFas levels in two critically 
ill cohorts provides very strong evidence that this locus 
is a true QTL for sFas production. Prior evidence from 
patients with coronary artery disease suggests that 
rs982764 may be a QTL for sFas in the population 
more generally (33) although this is the first report that 
suggests a link between genetic modulation of sFas 
levels and risk for a clinical outcome. We also provide 
new evidence that this QTL may influence sFas levels 
through altered levels of FAS mRNA isoforms. There is 
insufficient evidence to explain how sFas levels might 
affect organ dysfunction or whether the effect might be 
more directly related to altered CD4+ T-cell expression 

TABLE 3. 
Association of rs982764 With Sequential Organ Failure Assessment Score

Subject Set n β (95% CI)a p Adjusted β (95% CI)b p

Discovery 1,072 –0.24 (–0.48 to 0.02) 0.07 –0.25 (–0.49 to 0.00) 0.06

Validation 861 –0.18 (–0.45 to 0.10) 0.21 –0.18 (–0.45 to 0.10) 0.20

Meta-analysis  –0.21 (–0.39 to –0.02) 0.03 –0.21 (–0.40 to –0.03) 0.02

a �Effect size and direction for change in mean Sequential Organ Failure Assessment for each copy of minor allele of rs982764 (allele 
A>allele G).

b�Adjusted for age, gender, and sepsis.
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of Fas and modulation of immune cell apoptosis. Our 
findings with this variant are supported by strong bio-
logic plausibility due to the “cis” location and the effect 
on relevant mRNA isoforms; however, it only explains 
1.6% of the variance in plasma sFas levels. Future work 
will need to clarify the other major factors (e.g., demo-
graphic, environmental) influencing sFas levels.

Although no SNV reached genome-wide signifi-
cance in our discovery phase, variants in genes other 
than FAS also showed highly suggestive associations 
with sFas levels including variants within myosin 
light chain kinase (MYLK), a gene previously associ-
ated with risk for ARDS (34, 35). Notably, myosin light 
chain kinase enzyme activity is also linked to cellular 
apoptosis (36). The SNV most strongly associated with 
sFas levels was located in LAMA1, a gene implicated in 
organ development and shown to modulate the pulmo-
nary response to lung injury and fibrosis, biologic pro-
cesses relevant to acute organ dysfunction (37). Future 
work will need to clarify whether these loci might be 
true “trans” QTL for sFas levels and whether these loci 
affect clinical outcomes in which Fas-mediated cell 
death is pathophysiologically relevant.

Our study has several limitations. First, a signifi-
cant proportion of the subjects in the discovery set 
were enrolled through interventional clinical trials, and 
all patients were recruited at academic medical cen-
ters which may limit the generalizability of our results. 
Second, we limited this study to Caucasian subjects only 
in an effort to reduce the potential confounding effects of 
population stratification. Future work will need to deter-
mine whether our findings are relevant to more diverse 
populations. Third, testing associations with SOFA scores 
on days other than day 3 would have been informative, 
but some missing data and timing differences between 
the datasets prevented us performing these analyses. 
Fourth, our findings of an association between rs982764 
and organ failure were marginal when tested in the dis-
covery and validation sets individually while showing 
a significant association in the meta-analysis. Our esti-
mates from this study suggest that sample sizes of greater 
than 3,000 subjects would be necessary to fully power fu-
ture studies. Although this finding will need to be further 
replicated, the fact that the direction of effect was con-
sistent in the two independent cohorts provides some re-
assurance as to its validity. Finally, we did not have access 
to any critically ill study populations that had simulta-
neous measures of genotype, gene expression, plasma 

protein measurements, and clinical outcomes. However, 
the consistency of the direction of effects observed with 
the G allele of rs982764 G in the different study groups 
(i.e., reduced exon 6–negative mRNA isoform, increased 
cell surface Fas, reduced circulating sFas) supports a test-
able model linking the G allele to sFas and, in turn, organ 
failure in the critically ill. Because of some missingness in 
these cohorts, we were not able to perform a Mendelian 
randomization or mediation analysis to draw more di-
rect causation. However, the associations resulted here 
provide support for this type of structured analysis of the 
Fas pathway in critical illness.

CONCLUSIONS

We have found that SNV rs982764-G located in intron 
4-5 of FAS is associated with lower plasma sFas in two 
large critically ill cohorts. This SNV is also associated 
with decreased persistent systemic organ dysfunction. 
Finally, the G allele is associated with decreased rela-
tive expression of an mRNA isoform likely to code for 
sFas while also associated with increased cell surface 
expression of Fas on T cells. These findings provide ev-
idence for a potential role of the Fas pathway in the 
development of organ failure in critical illness.
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