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Introduction
Multiple sclerosis (MS) is a chronic, inflammatory, 
demyelinating, neurodegenerative disease of the cen-
tral nervous system (CNS). At disease onset, most 
patients (~85%) receive a diagnosis of relapsing-
remitting multiple sclerosis (RRMS) and 25%–40% 
advance to secondary progressive multiple sclerosis 
(SPMS) within 10 years.1,2

RRMS is characterized by relapses with full or par-
tial recovery followed by periods of remission, 
with pathophysiology apparently driven primarily by 
peripherally mediated focal inflammation.3,4 SPMS is 
distinguished from RRMS by disability progression 
independent of relapses.1,2,5 In SPMS, relapses 
become less frequent over time; approximately 30% 
of patients experience relapses, most of which occur 
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within 5 years of SPMS onset and/or before the age of 
55 years.5 SPMS pathophysiology is not fully charac-
terized but is believed to involve chronic inflamma-
tion compartmentalized in the CNS and failure or 
exhaustion of myelin repair mechanisms.3,4 In addi-
tion to compartmentalized inflammation, a loss of 
compensatory reserve capacity may be relevant for 
the emergence of clinical progression in the absence 
of relapses.6

Conventional T2- and T1-weighted magnetic reso-
nance imaging (MRI) has been very revealing of the 
peripherally mediated focal inflammation that under-
lies relapses in MS, but less so of the compartmental-
ized inflammation more closely associated with 
progression. The latter requires quantitative analysis 
methods to detect accelerated rates of global and 
regional brain volume loss (e.g. gray matter (GM) 
volume loss), and changes within lesional and nor-
mal-appearing tissues, such as myelin loss and repair. 
However, MRI measurements of total brain volume 
loss do not provide specific information on disease 
pathophysiology because small changes may be 
caused by several processes, including neuronal/
axonal loss, demyelination, and inflammation.7 MRI 
measurements of GM atrophy and magnetization 
transfer ratio (MTR) may provide better insights into 
different pathological pathways involved in neurode-
generation in SPMS. Cortical gray matter (cGM) and 
thalamic volume loss are also associated with long-
term disability accumulation and cognitive decline.8–10 
GM atrophy is also linked to neurodegenerative wors-
ening in progressive disease beyond the relapsing, 
inflammation-driven processes that occur earlier in 
MS.11–14 Since myelin is the primary target of inflam-
mation in MS, the measurement of changes in myelin 
content is also of particular interest. This can be 
accomplished on clinical scanners using MTR imag-
ing. Change in MTR has been shown to be a marker 
of myelin density in the brain.15

Siponimod is an oral sphingosine 1-phosphate (S1P) 
receptor modulator that selectively binds to S1P1 and 
S1P5 receptors.16 Indications for siponimod vary; it is 
approved in Europe in adults with active SPMS (i.e. 
with relapses or imaging features of disease 
activity),16 in the United States in relapsing forms of 
MS, including clinically isolated syndrome, RRMS, 
and active SPMS,17 and in some countries (e.g. 
Australia and Japan), in all patients with SPMS.

Clinical and preclinical evidence supports a dual 
mechanism of action for siponimod. Peripherally 
mediated anti-inflammatory effects through the S1P1 
receptor reduce the egress of pathogenic lymphocytes 

from lymph nodes, limiting the number of circulating 
lymphocytes entering the CNS.18 Preclinical data also 
suggest direct anti-inflammatory and promyelination 
effects of siponimod acting via the S1P1 and S1P5 
receptors on CNS-resident cells, including astrocytes, 
microglia, and oligodendroglial cells.19–23

In the phase 3 EXPAND study, siponimod was inves-
tigated in a broad population with SPMS (Expanded 
Disability Status Scale (EDSS) score of 3.0−6.5), 
including patients with advanced disease (>50% 
required walking aids at study entry (EDSS ⩾6.0)).24 
Compared with placebo, siponimod significantly 
reduced: the risk of 3-month confirmed disability pro-
gression (assessed by EDSS) by 21% and of 6-month 
progression by 26%;24 the risk of meaningful worsen-
ing in cognitive processing speed (determined as a 
⩾4-point decline in the Symbol Digit Modalities Test 
(SDMT) score);16,24,25 and total brain volume loss.24 
In addition, a significant effect was also observed on 
measures of inflammatory disease activity, including 
reduction in annualized relapse rate by 55%, MRI T2 
and T1 gadolinium lesion activity by 81% and 86%, 
respectively, and a significant reduction in T2 lesion 
volume.24

Given the efficacy of siponimod on clinical measures 
of progression, any effects on GM atrophy and MTR 
may give further insights into its dual mechanisms of 
action. Currently, little evidence exists on the impact of 
disease-modifying therapies (DMTs) on regional 
atrophy and MTR outcomes in populations with SPMS. 
One previous study observed no overall effect of inter-
feron E1b on the worsening of MTR measures.26 Some 
evidence also exists in populations with RRMS, with 
previous studies having shown effects of dimethyl 
fumarate and alemtuzumab.27,28 Overall, more infor-
mation is needed from large-scale studies to assess the 
impact of specific DMTs on these MRI measures, 
especially in patients with progressive MS.

Using data from EXPAND, we assessed the effect of 
siponimod versus placebo on cortical and thalamic 
GM atrophy, as well as changes in normalized mag-
netization transfer ratio (nMTR) measurements in 
normal-appearing brain tissue (NABT), cGM, and 
normal-appearing white matter (NAWM), and newly 
formed nMTR lesions in a population with SPMS.

Methods

Trial design and patients
The EXPAND (NCT01665144) study methodology 
was reported.24 In brief, EXPAND was a phase 3,  
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randomized, double-blind, placebo-controlled, event- 
and exposure-driven study of up to 37 months’ dura-
tion (median [interquartile range] = 21.3  [15.5–27.0] 
months) investigating the efficacy and safety of 
siponimod in patients with SPMS. Patients were ran-
domized (2:1) to once-daily oral siponimod 2 mg or 
placebo. Key eligibility criteria included age 18–60 
years, a diagnosis of SPMS, EDSS score of 3.0–6.5 at 
screening, a history of RRMS, documented EDSS 
score progression in the past 2 years, and no evidence 
of relapses in the previous 3 months. The protocol 
was approved by the relevant institutional review 
board or ethics committee at each trial site; all 
patients provided written informed consent.

Procedures
At all sites, standard-resolution MRI scans (1 mm  
× 1 mm × 3 mm) were scheduled at screening, at 
months 12, 24, and 36, and at the end of the controlled 
treatment phase (end of study (EOS) scan; if different 
from annual visits). MRI scans were also conducted 
in patients who discontinued prematurely from the 
double-blind study period and/or study treatment (end 
of treatment (EOT) scan).

Either MTR (1 mm × 1 mm × 3 mm) or high-resolu-
tion (1 mm isotropic) T1-weighted MRI sequences 
were added to conventional MRI scans at centers 
meeting prespecified technical requirements. MRI 
data were analyzed independently at a central site 
(NeuroRx Research, Montreal, QC, Canada) by staff 
blinded to treatment assignment.

Percentage brain volume change, percentage cGM 
volume change, and thalamic volume change were 
measured from baseline to each follow-up time point 
(i.e. at month 12, month 24, EOT, and EOS) using the 
paired Jacobian integration.29 GM atrophy was ini-
tially measured in the cohort of patients with high-
resolution MRI scanning. This was because of 
theoretical concerns about partial volume effects 
when assessing smaller and more complex brain 
structures, such as the thalamus and hippocampus. 
However, review of the results from the standard- and 
high-resolution MRI scans showed that the effects of 
the different scanning protocol were small. All 
patients underwent standard-resolution MRI scans; 
however, for those patients who also underwent high-
resolution MRI scans, GM atrophy measures were 
only processed from high-resolution MRI scans to 
avoid double-counting. The combined MRI set 
comprised both the standard- and high-resolution 
sets. Full details on the acquisition methodologies 

and scanners are provided in the Supplementary 
Appendix and MRI Appendix documents.

Objectives and endpoints
The objectives of the EXPAND analysis described 
here were to evaluate the effect of siponimod versus 
placebo on total brain volume (secondary objective), 
cGM and thalamic volume, and nMTR (exploratory 
objectives).

The following endpoints were assessed: percentage 
change from baseline to months 12 and 24 in total 
brain volume, cGM volume, and thalamic volume; 
change in nMTR from baseline to months 12 and 24 
in NABT, cGM, and NAWM; and nMTR recovery in 
newly formed MTR lesions (i.e. new areas of 
decreased MTR defined on MTR images at month 12 
in most cases, or at month 24 if a subsequent scan was 
available at month 36), which may reflect remyelina-
tion, assessed by the change in stable nMTR from 
pre- to post-lesion time points.

Statistical analyses
Analyses were performed for both the full analysis 
set (FAS) and per-protocol set (PPS). The FAS 
included all randomized patients with assigned treat-
ments who received ⩾1 dose of study drug; the PPS 
included all patients in the FAS, except those with 
major protocol deviations or with efficacy data col-
lected after permanent study drug discontinuation. A 
greater focus was placed on analyses in the PPS 
because potentially confounding data from patients 
who switched from placebo to open-label siponimod 
as rescue medication were not included in the PPS.24 
FAS analyses are included in the Supplementary 
Appendix.

In these analyses, the EOT and EOS scans, which are 
not time point-specific, were remapped to one of the 
scheduled time points (i.e. month 12, 24, or 36). 
Percentage change in total brain, cGM, and thalamic 
volumes were analyzed using a repeated-measures 
model adjusted for treatment, visit, normalized brain 
volume, number of baseline gadolinium-enhancing 
lesions, baseline T2 lesion volume, and visit-by-treat-
ment and visit-by-baseline brain volume interactions. 
An unstructured covariance matrix was used in the 
repeated-measures model to account for the variance in 
percent volume change at each time point and covari-
ance between time points. These analyses were per-
formed in patients with high-resolution scans and in 
patients with standard-resolution scans. Analyses for 

https://journals.sagepub.com/home/msj
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the combined MRI cohort were also conducted. The 
consistency of the treatment effect in patients with 
high- versus standard-resolution scans was further 
evaluated using subgroup- (high vs standard) by-treat-
ment interaction tests. This analysis did not evidence 
heterogeneity between subgroups (Supplemental 
Table S1).

In the combined MRI cohort, cGM volume and tha-
lamic volume were analyzed in subgroups stratified 
by baseline age (⩽45 years or >45 years), disease 
duration (⩽15 years or >15 years), EDSS score (<6.0 
or ⩾6.0), SDMT score (⩽43 or >43), and SPMS 
activity (active SPMS was defined as ⩾1 relapse in 
the 2 years before screening and/or ⩾1 gadolinium-
enhancing lesion at baseline).

MTR was analyzed in the MTR patient cohort. 
Variations in MTR acquired on different scanners 
were reduced by MTR normalization, by setting the 
MTRs of high-confidence cGM to 0 and of high-
confidence white matter to 1 on the MTR scan of a 
healthy control individual on the same scanner. A 
repeated-measures model, accounting for within-
patient correlation, was used to obtain nMTR esti-
mates in NABT, cGM, and NAWM. The model was 
adjusted for treatment, visit, baseline median nMTR 
of respective brain tissue, baseline number of 
gadolinium-enhancing lesions, baseline T2 lesion 
volume, and visit-by-treatment and visit-by-baseline 
interactions.

Lesional nMTR recovery was assessed in new nMTR 
lesions11 by comparing nMTR decrease from post-
lesion to pre-lesion time points for siponimod versus 
placebo. Of note, at least three nMTR scans were 
required to assess lesional nMTR recovery (pre-
lesion, peri-lesion, and post-lesion). Considering the 
duration of the study, the majority of peri-lesional 
scans were obtained at the month 12 visit (or rema-
pped month 12 visit). The latest available measure-
ments before and after the formation of a new lesion 
were considered. Given the yearly scans, these meas-
urements represented stable pre- and post-lesion MTR 
values because the period of acute lesion recovery 
lasts approximately 4 months. Results were analyzed 
in the FAS by a multilevel model that accounted for 
within-lesion and within-patient correlations. The 
model was adjusted for treatment, lesion time points, 
age, and treatment-by-time point interaction. Lesion 
volume was used as a weighting factor, and estimates 
were derived for pre-lesional and post-lesional time 
points. A model including all possible measurements 
at any time point (i.e. pre-lesional, new lesion, and 
post-lesional) was also derived.

Results

Patient characteristics
In total, GM volume measurements were analyzed 
from 546 patients (siponimod, n = 376; placebo, 
n = 170) who underwent high-resolution MRI scans 
and from 1007 patients (siponimod, n = 656; placebo, 
n = 351) with standard-resolution MRI scans. The sub-
set for MTR analyses included 606 patients (siponi-
mod, n = 388; placebo, n = 218). Baseline demographic 
and disease characteristics were broadly similar across 
all subsets of patients and the overall EXPAND popu-
lation (Table 1).

GM atrophy analyses
In the combined MRI cohort, siponimod slowed cGM 
(with consistent effects in the high- and standard-
resolution MRI patient subsets (Supplemental Table 
S2)), thalamic, and total brain volume loss versus 
placebo after 12 and 24 months of treatment (PPS; 
Figure 1).

Adjusted mean percentage changes in cGM volume 
from baseline to month 12 were 0.01 for siponimod 
and −0.60 for placebo (102% relative reduction in 
volume loss; p < 0.0001); corresponding changes 
from baseline to month 24 were −0.39 for siponimod 
and −1.04 for placebo (63% relative reduction in vol-
ume loss; p < 0.0001; Figure 1(a)). Adjusted mean 
percentage changes in thalamic volume from baseline 
to month 12 were −0.47 for siponimod and −0.94 for 
placebo (50% relative reduction in volume loss; 
p < 0.0001); corresponding changes from baseline to 
month 24 were −1.02 for siponimod and −1.77 for 
placebo (42% relative reduction in volume loss; 
p < 0.0001; Figure 1(b)). Adjusted mean percentage 
changes in total brain volume from baseline to month 
12 were −0.23 for siponimod and −0.45 for placebo 
(49% relative reduction in volume loss; p < 0.0001); 
corresponding changes from baseline to month 24 
were −0.62 for siponimod and −0.90 for placebo 
(31% relative reduction in volume loss; p < 0.0001; 
Figure 1(c)). The effects of siponimod versus placebo 
on cGM, thalamic, and total brain atrophy were con-
sistent in the FAS (Supplemental Figure S1).

Although the rate of cGM atrophy was constant/simi-
lar across subgroups, the rate of thalamic atrophy was 
more pronounced in the group of patients with inflam-
matory disease activity (i.e. gadolinium-enhancing 
lesions). Nevertheless, reductions from baseline to 
months 12 and 24 in cGM and thalamic atrophy with 
siponimod versus placebo were consistent across 
patient subgroups, regardless of baseline age, disease 
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Siponimod (n = 696) Placebo (n = 342)
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Figure 1. Percentage change in volume of (a) cGM,  
(b) thalamus, and (c) total brain in the combined MRI 
cohort (PPSa).
cGM: cortical gray matter; CI: confidence interval; FAS: full 
analysis set; Gd+: gadolinium-enhancing; LS: least-squares; M, 
month; MMRM: multilevel model for repeated measures; MRI, 
magnetic resonance imaging; PPS: per-protocol set.
Percentage changes in brain structure volumes from baseline were 
analyzed using an MMRM adjusted for visit, treatment, baseline 
brain volume of a specific region, number of Gd+ T1 lesions 
at baseline, T2 lesion volume at baseline, treatment-by-visit 
interaction, and baseline total brain volume-by-visit interaction.
aPPS included all patients from the FAS who did not have any 
major protocol deviations that could confound interpretation.

duration, activity, or severity (based on EDSS and 
SDMT baseline scores) in both the PPS (Figures 2 
and 3) and the FAS (data not shown).

MTR analyses
In the MTR subset, siponimod was associated with an 
increase in nMTR from baseline or return to baseline 
levels in all brain tissues evaluated. These effects 
were evident at month 24 (PPS; Figure 4).

There were no significant differences in mean nMTR 
change from baseline to month 12 with siponimod 
versus placebo in NABT (−0.011 vs −0.014; between-
treatment difference: 21%; p = 0.7285), cGM (−0.007 
vs −0.009; between-treatment difference: 22%; 
p = 0.8308), or NAWM (−0.005 vs −0.018; between-
treatment difference: 72%; p = 0.1550). However, by 
month 24, mean nMTR had increased above base-
line levels with siponimod, but had continued to 
decrease in all tissues with placebo (mean nMTR 
changes for siponimod vs placebo: NABT, 0.001 vs 
−0.055; between-treatment difference: 102%; 
p = 0.0050; cGM, 0.008 vs −0.046; between-treat-
ment difference: 117%; p = 0.0141; NAWM, 0.010 
vs −0.056; between-treatment difference: 118%; 
p = 0.0004); the average of the between-treatment 
differences at months 12 and 24 for NABT, cGM, 
and NAWM was in the range 85%–105% (Figure 4). 
The effect of siponimod versus placebo on reduction 
or suppression of nMTR decrease over time was 
consistent in the PPS and the FAS (Supplemental 
Figure S2).

Compared with placebo, siponimod reduced or sup-
pressed nMTR decrease over time across all patient 
subgroups (baseline age, disease duration, severity, or 
activity) in both the PPS (Figure 5) and FAS (data not 
shown), although the differences did not always reach 
nominal statistical significance. The magnitude of the 
between-treatment differences varied across sub-
groups: from 70% to 170% for NABT (Figure 5(a)); 
from 59% to 188% for cGM (Figure 5(b)); and from 
81% to 195% for NAWM (Figure 5(c)).

In newly formed nMTR lesions, siponimod was asso-
ciated with improved nMTR recovery versus placebo. 
Total decrease in nMTR from stable pre-lesion to sta-
ble post-lesion values was less with siponimod than 
placebo (−1.35 vs −1.71; between-treatment differ-
ence: 0.36; p < 0.0001) (Table 2). This model was 
based on the latest pre-lesion and latest post-lesion 
measurements. Similar results were obtained using a 
multilevel model with all pre-lesion, new lesion, and 
post-lesion time points included (Figure 6).
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Discussion
MRI measures of GM atrophy and brain tissue 
integrity/myelination provide important insights 
into changes occurring in brain tissue and may be 

seen as indicators of chronic, compartmentalized 
CNS inflammation and neurodegeneration, the pri-
mary drivers of progression in patients with SPMS.30 
Treatment response on these MRI markers may 
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from baseline to M12
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Figure 2. Percentage change in cGM volume (a) from baseline to month 12 and (b) from baseline to month 24 by 
subgroups according to baseline age, disease duration, severity, or activitya in the combined MRI cohort (PPSb).
cGM: cortical gray matter; CI: confidence interval; EDSS: Expanded Disability Status Scale; FAS, full analysis set; Gd+: gadolinium-
enhancing; M: month; MRI: magnetic resonance imaging; PPS: per-protocol set; SDMT: Symbol Digit Modalities Test; SPMS: 
secondary progressive multiple sclerosis.
aPatients were considered to have active SPMS if they had ⩾1 relapse in the 2 years before the study and/or had ⩾1 Gd+ lesion at 
baseline; superimposed relapses and Gd+ lesions subgroups are based on events 2 years before or at baseline, respectively.
bPPS included all patients from the FAS who did not have any major protocol deviations that could confound interpretation.
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therefore represent a therapeutic impact on these 
chronic inflammatory and neurodegenerative path-
ways. This analysis from EXPAND showed that, 

compared with placebo, siponimod is associated with 
slowing of both cortical and thalamic volume loss, 
improvement in brain tissue integrity/myelination 
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Figure 3. Percentage change in thalamic volume (a) from baseline to month 12 and (b) from baseline to month 24 by 
subgroups according to baseline age, disease duration, severity, or activitya in the combined standard-resolution and 
high-resolution MRI cohorts (PPSb).
CI: confidence interval; EDSS: Expanded Disability Status Scale; FAS: full analysis set; Gd+: gadolinium-enhancing; M: month;  
PPS: per-protocol set; SDMT: Symbol Digit Modalities Test; SPMS: secondary progressive multiple sclerosis.
aPatients were considered to have active SPMS if they had ⩾1 relapse in the 2 years before the study and/or had ⩾1 Gd+ lesion at 
baseline; superimposed relapses and Gd+ lesions subgroups are based on events 2 years before or at baseline, respectively.
bPPS included all patients from the FAS who did not have any major protocol deviations that could confound interpretation.
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Figure 4. Change from baseline to months 12 and 24 in median nMTRa in (a) NABT, (b) cGM, and (c) NAWM in the 
MTR subset (PPSb).
cGM: cortical gray matter; CI: confidence interval; FAS: full analysis set; M: month; MTR: magnetization transfer ratio; NABT: normal-
appearing brain tissue; NAWM: normal-appearing white matter; nMTR: normalized magnetization transfer ratio; PPS: per-protocol set.
aVariations in MTR acquired on different scanners were reduced by MTR normalization, by setting the MTR of high-confidence cGM to 
0 and of high-confidence white matter to 1 on the MTR scan of a healthy control individual on the same scanner.
bPPS included all patients from the FAS who did not have any major protocol deviations that could confound interpretation.
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129/71
146/85

n/n
(siponimod/

placebo)

163/81
112/75

218/126
57/30

0.174 (0.071, 0.277)
0.010 (–0.036, 0.056)
0.045 (–0.013, 0.103)
0.064 (–0.004, 0.131)
 0.058 (–0.003, 0.119)
0.056 (–0.014, 0.126)
0.050 (–0.021, 0.120)
0.056 (–0.001, 0.114)

0.015 (–0.058, 0.088)
0.084 (0.031, 0.136)

Between-treatment
difference 

(95% CI)

0.033 (–0.031, 0.096)
0.071 (0.010, 0.131)
0.037 (–0.016, 0.089)
0.114 (0.038, 0.190)

Placebo Siponimod
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–0.019
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0.006

0.019

0.013

0.003

0.039
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–0.017
–0.007

–0.054

–0.038
0.026

–0.048

–0.039

–0.058

–0.038
0.018

–0.008

–0.075

–0.020

–0.072

–0.031

–0.100
0.014

–0.002

0.009

–0.009

0.010

–0.009

0.017

0.007

0.013

0.005

Absolute change from baseline to M24 in 
median nMTR in NABT

Absolute change from baseline to M24 in 
median nMTR in cGM

(assessed by nMTR), and improvement in nMTR 
recovery in newly formed lesions in patients with 
SPMS. These findings are compatible with, although 
not proof of, a direct effect of siponimod on neuro-
degenerative processes beyond suppression of periph-
eral inflammation.

Siponimod consistently slowed the progression of 
cGM atrophy (by 46%–76%) and thalamic atrophy 
(by 30%–61%) across subgroups stratified by age, 

disease duration, disease severity (both cognitive and 
physical), and inflammatory disease activity. A pro-
nounced difference in the dynamics of volume loss 
was seen between cGM and the thalamus. The pres-
ence of gadolinium-enhancing lesions accelerated 
volume loss in the thalamus but had little impact on 
cGM atrophy. This observation suggests that different 
dynamics drive cGM atrophy (less affected by acute 
inflammatory activity) and thalamic atrophy (sub-
stantially affected by acute inflammatory activity). 

Figure 5, (Continued)
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Nevertheless, the effect of siponimod was consistent 
in patients with or without inflammatory disease 
activity (i.e. gadolinium-enhancing lesions). Thus, 
these findings all together suggest that the action of 
siponimod is being mediated (at least in part) inde-
pendently of effects on acute inflammation. 
Reductions in GM atrophy have been associated 
with positive effects on long-term clinical outcomes, 
including disability progression and cognitive 
decline.8–10 The reduced GM atrophy observed here 
contributes to the previous reported delays in pro-
gression of physical disability and cognitive impair-
ment observed with siponimod versus placebo in 
EXPAND.24,25 Interestingly, other potent anti-
inflammatory DMTs such as natalizumab did not 
show conclusive effects on these measures in patients 
with SPMS.31 Ocrelizumab reported significant 
effects on thalamic atrophy but no significant effects 
in reducing cGM atrophy in patients with progressive 
MS.32

Siponimod positively affected brain tissue integrity/
myelination (assessed by nMTR), consistently slow-
ing nMTR decrease over 24 months in NABT (by 

70%–170%), cGM (by 59%–188%), and NAWM (by 
81%–195%). This effect was most pronounced in 
NAWM, in which a significant increase in nMTR 
relative to placebo was observed in most subgroups. 
Importantly, diffuse injury in NAWM is closely asso-
ciated with cortical lesion volume.3 Effects on nMTR 
became more pronounced over time, with nMTR 
returning to or surpassing baseline in patients treated 
with siponimod. Although MTR increases may be 
associated with resolution of edema, the changes 
reported here were made in normal-appearing tis-
sues, which are not subject to large changes in water 
content, and in acute lesions with reference to stable 
pre-lesion and post-lesion levels. Under these cir-
cumstances, the recovery of inflammatory edema 
associated with acute lesions is not relevant, and 
these changes could be interpreted as reflecting 
improvements in myelin density and tissue integrity. 
This is supported by the fact that nMTR recovered to 
a greater extent with siponimod than with placebo 
even in patients without inflammatory disease activ-
ity. The fact that the treatment effect on nMTR only 
became apparent during the second year of treatment 
suggests that measures of neurodegeneration and 

Age ≤ 45 years

(c)

Age > 45 years
Disease duration ≤ 15 years
Disease duration > 15 years
EDSS < 6.0
EDSS ≥ 6.0
SDMT > 43
SDMT ≤ 43

Non-active SPMS
Active SPMS

Subgroups

Without superimposed relapses
With superimposed relapses
Without Gd+ lesions
With Gd+ lesions

Placebo Siponimod

Subgroups by disease history and severity
Subgroups by inflammatory disease activity

112 (p = 0.004)
122 (p = 0.027)
  89 (p = 0.026)
154 (p = 0.008)
115 (p = 0.009)
132 (p = 0.049)
100 (p = 0.026)
137 (p = 0.014)

195 (p = 0.015)
  97 (p = 0.001)

Percentage
reduction vs

placebo (p value)

166 (p = 0.014)
  81 (p = 0.013)
130 (p = 0.006)
117 (p = 0.003)

100/58
175/98
131/84
144/72
133/78
142/78
111/74
159/82

129/71
146/85

n/n
(siponimod/

placebo)

163/81
112/75

218/126
57/30

0.138 (0.047, 0.228)
0.044 (0.005, 0.082)
0.057 (0.007, 0.107)
0.075 (0.020, 0.129)
 0.070 (0.018, 0.122)
0.054 (0.000, 0.108)
0.055 (0.007, 0.103)
0.066 (0.013, 0.119)

0.083 (0.017, 0.149)
0.067 (0.027, 0.107)

Between-treatment
difference 

(95% CI)

0.068 (0.014, 0.122)
0.060 (0.013, 0.107)
0.062 (0.018, 0.105)
0.095 (0.034, 0.156)
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0.018
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0.027

0.014

Absolute change from baseline to M24 in 
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Figure 5. Change in median nMTR from baseline to 24 months in (a) NABT, (b) cGM, and (c) NAWM by subgroups 
according to baseline age, disease duration, severity, or activitya (PPSb).
cGM: cortical gray matter; CI: confidence interval; EDSS: Expanded Disability Status Scale; FAS: full analysis set; Gd+: gadolinium-
enhancing; M: month; NABT: normal-appearing brain tissue; NAWM: normal-appearing white matter; nMTR: normalized magnetization 
transfer ratio; PPS: per-protocol set; SDMT: Symbol Digit Modalities Test; SPMS: secondary progressive multiple sclerosis.
aPatients were considered to have active SPMS if they had ⩾1 relapse in the 2 years before the study and/or had ⩾1 Gd+ lesion at 
baseline; superimposed relapses and Gd+ lesions subgroups are based on events 2 years before or at baseline, respectively.
bPPS included all patients from the FAS who did not have any major protocol deviations that could confound interpretation.
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neuroprotective mechanisms may need to be moni-
tored over a relatively long time before becoming 
detectable. The fact that siponimod improved nMTR 
recovery in newly formed nMTR lesions is consistent 
with observations from preclinical studies showing 
that siponimod promotes remyelination.22,33

There is little precedence in the clinical trial literature 
of currently approved DMTs for the observations 
reported here with siponimod in patients with SPMS. 
Other DMTs have been reported to slow cortical and 
thalamic GM atrophy mainly in relapsing MS.32,34 
Reports of increased MTR levels have been made in 
relapsing MS, where dimethyl fumarate has been 
shown to increase MTR in normal-appearing tissues27 

but not in newly formed lesions, and not in SPMS. 
Observations from preclinical models support a pro-
myelinating effect of siponimod.22,33 Taken together 
with the findings from this study, siponimod may 
have an impact on the neurodegenerative component 
of SPMS (in addition to anti-inflammatory effects) 
that may have contributed to the reduced risk of 
disability progression and of cognitive worsening 
observed with siponimod versus placebo in EXPAND. 
Most DMTs approved for relapsing MS, including 
highly effective anti-inflammatory drugs such as 
natalizumab,31 failed to slow disability progression 
when studied in SPMS or primary progressive multi-
ple sclerosis (PPMS). Conversely, ibudilast, a DMT 
in development, was associated with benefits on 

Table 2. nMTR recovery in nMTR lesions (FASa).

Siponimod  
(N = 413, N’ = 72)

Placebo  
(N = 226, N’ = 80)

Treatment difference 
(siponimod vs placebo)

p-value

nMTR drop (accounting 
for lesion volume)

−1.35 −1.71 0.36 <0.0001

FAS: full analysis set; MTR: magnetization transfer ratio; N: number of patients in MTR subset; N’: number of patients with at 
least one MTR lesion; nMTR: normalized magnetization transfer ratio.
nMTR drop (i.e. nMTR recovery metrics) describes the total decrease in nMTR from pre- to post-nMTR lesion time points. At 
least three MTR scans were needed: (1) to obtain a stable pre-lesion nMTR value; (2) to detect an acute drop in nMTR indicative 
of a newly forming lesion; and (3) to obtain a stable post-lesion nMTR value. In this analysis, the latest available measurement 
before the formation of a new lesion was taken as pre-lesion time point, and the latest available measurement after the formation of 
a new lesion was taken as the post-lesion time point. Peri-lesion time points were not included.
aFAS included all randomized patients with assigned treatments who took at least one dose of study medication.
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Figure 6. nMTR recovery metrics in nMTR lesions using a model that included all pre-lesional, new lesion, and  
post-lesional measurements (FASa).
FAS: full analysis set; GM: gray matter; MTR: magnetization transfer ratio; nMTR: normalized magnetization transfer ratio; WM: white 
matter.
nMTR drop (i.e. nMTR recovery metrics) describes the total decrease in nMTR from pre- to post-nMTR lesion time points.
aFAS included all randomized patients with assigned treatments who took at least one dose of study medication.
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markers of neurodegeneration but not on markers of 
acute inflammation in a phase 2 trial in patients with 
progressive MS.35 Thus, therapeutic action on inflam-
mation and neurodegeneration is de-coupled in other 
DMTs. As shown in clinical and preclinical studies, 
siponimod appears to affect both neurodegeneration/
demyelination and inflammation, consistent with a 
dual mode of action.

A few limitations to this study are important to appreci-
ate. Brain volume changes on the order of a fraction of 
a percent can result from causes other than irreversible 
neurodegeneration, and the subtle increases in brain 
volume observed here could reflect increases in the 
volume of glial cells, and not necessarily neuronal cells 
(although this may still be an important neuroprotec-
tive effect). Similarly, the changes in MTR, although 
relatively specific for myelin, are associated with 
changes in other tissue components, which tend to 
change in a correlated fashion. Changes in tissue water 
can be associated with small changes in brain volume 
or MTR simply because of dilution or concentration. 
However, for this effect to be responsible for the obser-
vations reported here, increases in MTR would have to 
have been associated with increased atrophy, which 
was not the case. Considering that MRI scans in this 
study were scheduled annually, it was not possible to 
determine the exact time of onset of lesion formation 
for all MTR lesions. This analysis also relied on the 
assumption that MTR values were stable outside the 
period of acute lesion formation and recovery.

In summary, these beneficial effects of siponimod on 
regional brain atrophy and tissue integrity/myelina-
tion are consistent with previous preclinical findings 
and highlight possible direct CNS effects of siponi-
mod, which may be relevant to its effects on disability 
progression and cognitive processing speed in patients 
with SPMS.
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