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ABSTRACT: Foreign particles and microbes are rapidly cleared
by macrophages in vivo, although many key aspects of uptake
mechanisms remain unclear. “Self” cells express CD47 which
functions as an anti-phagocytic ligand for SIRPa on macrophages,
particularly when pro-phagocytic ligands such as antibodies are
displayed in parallel. Here, we review CD47 and related “Self”’
peptides as modulators of macrophage uptake. Nanoparticles
conjugated with either CD47 or peptides derived from its SIRPa
binding site can suppress phagocytic uptake by macrophages in
vitro and in vivo, with similar findings for CD47-displaying viruses.
Drugs, dyes, and genes as payloads thus show increased delivery to
targeted cells. On the other hand, CD47 expression by cancer cells
enables such cells to evade macrophages and immune surveillance.
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This has motivated development of soluble antagonists to CD47-SIRPa, ranging from blocking antibodies in the clinic to synthetic
peptides in preclinical models. CD47 and peptides are thus emerging as dual-use phagocytosis modulators against diseases.

B INTRODUCTION

Phagocytosis is an ancient and basic cellular process that refers
to the devouring of a target. Bacteria and fungi are targets of
phagocytosis by amoebae and require little to no discrim-
ination. However, in animals, phagocytes such as macrophages
must identify, attack, and preferentially engulf “foreign” targets
while avoiding healthy “Self” cells. These innate immune
phagocytes are the host’s primary line of defense against
various invading microbes, both large and small. Phagocytosis
is stimulated by “eat me” signals which initiate actin
cytoskeleton remodeling that drives macrophage protrusions
to envelop—and subsequently internalize and destroy—a
“foreign” target. Relevant factors range from highly specific
biomolecular interactors (protein—protein) to less specific
surface effectors (charge, adsorbed species, ligand patterns)
and physiochemical features (rigidity, shape). Opposing some
of these “eat me” pathways are “don’t eat me” signaling
molecules that can inhibit macrophage uptake. This brief
review focuses on some of the latest advances in modulating
macrophage elimination of nanoparticles, viruses, and cancer
cells through manipulation of the specific “don’t eat me”
CD47-SIRPa axis.

B MACROPHAGE CHECKPOINT, CD47-SIRP«a

The “Marker of Self” protein, CD47, is a ubiquitously
expressed, integral membrane protein that interacts with the
macrophage receptor SIRPa to inhibit phagocytic uptake
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(Figure 1)."~> While an interaction between CD24 and Siglec-
10 is potentially another macrophage checkpoint,* the CD47-
SIRPa interaction is more thoroughly characterized and
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Figure 1. “Marker of Self” CD47 inhibits phagocytosis by macro-
phages. Serum proteins, such as IgG in blood, adsorb to “foreign”
particles or bind specifically, stimulating phagocytosis. Such uptake is
inhibited if SIRPa binds its ligand CD47 that is presented on “Self”
cells, including red blood cells.

Special Issue: What Comes after Liposomes? Self-
Assembled Systems

Received: January 16, 2022

Revised:  March 9, 2022

https://doi.org/10.1021/acs.bioconjchem.2c00019
Bioconjugate Chem. XXXX, XXX, XXX—XXX


https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.bioconjchem.2c00019&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/bcches/current?ref=pdf
https://pubs.acs.org/toc/bcches/current?ref=pdf
https://pubs.acs.org/toc/bcches/current?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00019?fig=fig1&ref=pdf
pubs.acs.org/bc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.bioconjchem.2c00019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/bc?ref=pdf
https://pubs.acs.org/bc?ref=pdf

Bioconjugate Chemistry pubs.acs.org/bc
drug loaded NP gene carrying lentivirus
= k e L .
° ve )
v /O
VS e e0, % o O’
(P o, ® o:/ \O \o
serum proteins x serum protelns Cz L
b w N
v v
2\ gL/,
o %0 = o %o = ’:': v,
SO LS S —°
‘oa "\ &% s o/
2 & ° 3 "'Z/ (L \0\3
nano-Self coated nano-Self coated
+ drug loaded NP + gene carrying lentivirus
i *;::.‘
°®
‘ vev ..
L2 A
- e /%
v..: 5 23 ‘ "\\- ov\"\Q'Y N
L oF o
ve ' M & . . X °
B "’ o MR O\C\“?/j/o (/\'Jl A
] vev % MPS Phagocyt o
# = 2 L. Reducded on-t uced on-target L ‘\K“? .
Do Ye NP delive vector delivery i SN -
Ry 4 R A \Soo
voe o3 \.ro/ <L

nano-Self inhibits uptake,
Enahnced on-target
NP delivery

nano-Self inhibits uptake
Enahnced on-target
gene vector delivery

Figure 2. CD47-peptides prolong circulation and increase on-target deliver. Drug-loaded nanoparticles (left) and gene-carrying lentivirus (right)
have limited efficacy because of phagocytic uptake. CD47 and related “Self” peptides on nanoparticles and viruses bind SIRPa on macrophages and
help recognize the object as “Self”, leading to prolonged circulation and enhanced on-target delivery.

conserved across many higher animals. Inhibition of macro-
phage uptake involves phosphorylation of SIRPa’s cytoplasmic
immunoreceptor tyrosine-based inhibitory motif (ITIM) and
activating phosphatases SHP-1 and SHP-2.>~7 The binding
interaction between CD47 and SIRPa tends to be species- and
even strain—speciﬁc,g'9 with some notable cross-interactions
such as human CD47 binding to NOD mouse and pig SIRPq,
and pig CD47 binding to human SIRPa.”"' Thus, the
inhibitory effect of this receptor—ligand interaction is
determined by protein sequence and structure.'”

The high efficiency by which macrophages remove foreign
objects circulating in the body often hinders nanoparticle-
based drug delivery, with uptake by pervasive macrophages
frustrating delivery to intended targets such as cancer cells.
This has led to the idea of using CD47 to make solid particles
and viruses more tolerable and increase on-target delivery of
nanomedicines and genes. Complementary to such efforts has
been the goal of antagonizing the CD47-SIRPa axis to enhance
phagocytosis, with antibody-based disruption rapidly emerging
as a clinically relevant addition to cancer immunotherapy and
new possibilities with small, inhibitory peptide designs.

H NANOPARTICLES DISPLAYING CD47 AND “SELF”
PEPTIDE DELAY CLEARANCE TO ENHANCE
DELIVERY

Intravenous administration of nanoparticles has the potential
advantage of circulating through every tissue and disease site.
Unfortunately, such injected nanoparticles are typically cleared
in minutes to hours by the mononuclear phagocyte system
(MPS), particularly macrophages in the liver and spleen. 13-1s
For comparison, fresh red blood cells (RBCs) can circulate for

weeks or longer after infusion but are then also cleared by
macrophages, particularly in the spleen." The mechanism(s) by
which a macrophage identifies and eliminates a nanoparticle
remain unclear. It is known that blood serum proteins
physisorb and accumulate on all surfaces to form a “protein
corona” that can engage phagocytic receptors—the most
notable of which is immunoglobulin-G (IgG) that can bind
and activate macrophage Fc-receptors (FcRs). 16=18 The
process is often referred to as opsonization and is
representative of what has long been described for
biomaterials: clean chemistry is invariably “fouled” in vivo.
PEGylation is a classic approach to prolong nanoparticle
circulation and tends to delay protein physisorption to
surfaces, but clearance is only delayed.'”~>* Opsonization
leads to macrophage interactions, but interactions of cells with
materials are further modulated by physical properties, such as
rigidity, size, and curvature (shape), which have all proven to
be factors that influence nanoparticle clearance by macro-
phages.”*** The limitations of a short circulation halflife of
nanoparticles due to macrophage uptake provide an oppor-
tunity to modify them in order to make them more like “Self”
(Figure 2).

Conjugation of CD47’s extracellular domain of ~100 amino
acids (via biotinylation) to avidin-coated, cell-sized, polystyr-
ene beads proved sufficient to inhibit the engulfment of the
beads when opsonized with antiavidin IgG Importantly,
CD47 had no effect on beads that lacked IgG. The microbead
results encouraged nanobead studies and also motivated
synthesis of a related 21-amino-acid “Self’ peptide.”® In vivo
tests showed CD47 and the “Self” peptide both increased
circulation half-life of nanobeads in mice by delaying splenic
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macrophage clearance, greatly enhancing tumor imaging and
drug delivery to the tumor.>® Subsequent studies by a separate
lab attached the “Self” peptide to nanosheets of graphene
oxide, reporting similar results that concluded that the “Self”
peptide is more effective than PEGylation.”® Other laboratories
have also shown that functionalizing nanomaterials with
recombinant CD47 or “Self” peptides typically prolonged
circulation, sug)pressed clearance, and improved therapeutic
responses.”’ > One additional application attached the “Self’
peptide to nanoliposomes and found that they saturate and
passivate liver macrophages, unlike control nanoliposomes,
thus increasing the circulation and efficacy of subsequently
injected nanoparticles.”’ Whether the deposition of serum-
opsonizing IgG on these diverse nanoparticles has a role in the
results is generally unclear. Nonetheless, the various studies
highlight the utility of conjugating CD47 or shorter “Self’
peptides to a diverse range of nanomaterials for many types of
applications.

B “SELF” ON VIRUSES SUPPRESSES PHAGOCYTOSIS
AND ENHANCES GENE DELIVERY

Virus-based gene delivery is in wide clinical use for vaccines
(such as Spike protein of SARS-CoV2) and for ex vivo
engineering of cells (such as CAR T cells). Lentiviral and
adeno-associated viral vectors are the most common in efforts
to deliver genes to targets intraveneously,” but macrophages
are again stimulated to eliminate these “natural nanoparticles”,
possibly resulting in virally induced inflammatory reac-
tions.”>"** Many groups have tried to suppress MPS-mediated
elimination of viruses by conjugating synthetic polymers to
minimize opsonization; however, such modifications sterically
hinder critical protein interactions for virus binding to the
desired target.*>”

Lentivirus is generally harvested after exocytosis from a cell
line, and so overexpression of the membrane protein CD47 by
a suitably engineered cell line can in principle generate CD47
displaying Lentivirus. Two separate studies have indeed
generated CD47-Lenti and shown reduced macrophage
interactions and improved delivery of genes. The first study
delivered red fluorescent protein (RFP) with control or CD47-
Lenti to differentiated human macrophage cultures and
showed the following: (1) transduction by CD47-Lenti was
~3-fold lower than the control, and (2) SIRPa-expressing
AS49 lung adenocarcinoma cells were preferentially transduced
by CD47-Lenti.*® The latter suggests that SIRPa serves as a
docking receptor for CD47-mediated attachment and
infection. Similar results were observed in vivo: transgene
expression was higher in A549 tumors with CD47-Lenti, while
liver and spleen macrophages showed significantly decreased
expression relative to controls. Additional experiments, such as
antibody-based inhibition of SIRPa interactions, were
conducted to validate specificity. A second study used
human-CD47 to increase the efficiency of the liver gene
transfer by lentivirus.”® After determining that liver macro-
phages clear intravenously administered lentivirus, CD47-Lenti
increased gene transfer to hepatocytes and decreased transfer
to macrophages. The assays were done in both NOD mice,
which express SIRPa that binds to human-CD47, and CS7BL/
6 mice with weaker affinity. Clearance of CD47-Lenti proved
greater in the C57BL/6 mice. Safety and efficacy were further
demonstrated in nonhuman primates that have higher
sequence homology of CD47 and SIRPa to humans. These
studies show that displaying CD47 protects a membrane-

enveloped virus such as lentivirus from macrophage elimi-
nation, thereby enhancing the efficacy of gene transfer
therapies.

Similar to lentivirus, display of the “Self” peptide on the
clinically relevant adeno-associated virus vector (AAV)
resulted in reduced phagocytic susceptibility of the AAV in
vitro.*” Because AAVs do not have a membrane envelope, the
“Self” peptide was directly introduced into an AAV2 capsid
protein and flanked by glycine-serine linkers to ensure capsid
stability and minimize viral titer loss. Such insertion had little
to no impact on transduction efficiency but reduced virus
uptake up to 10-fold in human macrophages when compared
to control AAV2. This difference was again lost upon blocking
with anti-SIRPa antibody. AAV is only 20 nm in size, whereas
lentivirus is ~100 nm, and since CD47-SIRPa is a specific
inhibitor of phagocytic uptake and not endocytosis, the results
to date with CD47-conjugated viruses underscore the high
efficiency of macrophage phagocytosis of nanoparticles.

Phagocytosis is often cited in the cell biology literature as
relevant only for larger entities (particles, apoptotic cells, or
microbes), but early experiments with particles of widely
different sizes did not adequately consider particle buoyancy
differences and other size effects (per discussion elsewhere™).
If few small particles settle, then few small particles will be
taken up. However, buoyancy is unimportant in vivo.
Macrophages in the liver and spleen are prominent in the
above studies with nanoparticles and viruses because macro-
phages line the blood vessels in these tissues, facilitating direct
and immediate access to intravenously injected particles.
Macrophages are nonetheless resident in all tissues and are
commonly a major cell presence at disease sites such as tumors
or at sites of puncture or injury."' Uptake pathways are also
important to end points: for example, phagosomes are more
oxidative and destructive to cargoes than endosomes. All of
these factors have implications for the billions of viral doses
being injected as vaccines, such as the DNA delivered by
adenovirus in the SARS-CoV2 vaccines from Johnson &
Johnson or Oxford AstraZeneca.

B SOLUBLE ANTAGONISTS OF CD47-SIRPax
ENHANCE PHAGOCYTOSIS

CD47 is ubiquitously expressed, but not only overexpression of
CD47 on ovarian cancer was documented many decades ago,
but antibody targeting for tumor imaging before CD47 was
also sequenced and eventually shown to inhibit phagocytosis.**
Antibody targeting of CD47 on other cancers subsequently
followed with evidence of a therapeutic window for human
tumor xenografts, although it was initially unclear whether the
IgG inhibited phagocytosis and/or activated FcR-driven
phagocytosis.”*~** Moreover, the single study® of syngeneic
mouse tumors in mice treated with anti-mouse CD47 was the
subject of a focused reproducibility study that showed no hint
of any antitumor effect with anti-CD47 but did show anemia.*®
This latter, negative result for monotherapy has largely
translated to anticancer efforts in the clinic and seems
consistent with the fact that CD47-knockout mice are nearly
normal, with minimal defects, and no measurable anemia.'
This latter observation by an immunology lab raised
considerable doubt among hematologists about CD47’s
claimed “Marker of Self” function.

Antagonizing the CD47-SIRPa macrophage checkpoint in
combination with an “eat me” signal is promising, in contrast
to monotherapy, and has prompted an explosion of work on
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soluble antagonists. These range from various IgG designs and
recombinant proteins in the clinic to small peptides, all of
which serve as possible drugs with varying efficacies against
numerous liquid and solid malignancies (Figure 3).'">*~*

CDA47 suppresses IgG “eat me” opsonization

(O}
%
2

o
.

©
)
3
s,
% % .
3,
<.

Redu
7 CDA47 expression

Recombinant protein inhibitors

Figure 3. Soluble antagonists of SIRP@-CD47 for immunotherapy.
Tumor cells express macrophage checkpoint CD47, which inhibits
phagocytosis. IgG opsonization alone is insufficient to prompt
efficient phagocytosis due to the CD47 “don’t eat” signal, but various
strategies can antagonize this inhibition. At least three immunother-
apeutic strategies are currently pursued in preclinical and clinical
studies: antibodies against CD47 or SIRPa, soluble versions of these
proteins as inhibitors, and related “Self” peptide antagonists. Small
molecules (green triangles) might eventually be developed to suppress
transcription of CD47 but would still require an “eat me” signal.

The most advanced anti-CD47 treatment is a humanized IgG4
monoclonal antibody named magrolimab (or HuSf9-G4) that
binds CD47 and inhibits its binding to SIRPa without
soliciting macrophage activation due to weak IgG4 affinity
for macrophage FcRs.°">* Nonetheless, expression of CD47
on virtually every cell in the body constitutes an “antigen sink”
with indiscriminate binding of magrolimab and other CD47-
targeting inhibitors resulting in unavoidable on-target binding
toxicities, such as anemia and thrombocytopenia.”*>* Ongoing
efforts to address this safety concern include development of
nanobodies with strong CD47 binding and antitumor activity
but low affinity for human RBCs.>

Targeting the SIRPa receptor might prove safer, as its
expression is more restricted, although SIRPa expression
extends beyond myeloid lineages to cells such as epithelial
cells.’*” Some studies have indeed suggested that the anti-
SIRPa blockade is as effective as anti-CD47 but maintains safe
hematological profiles.”®*® An engineered macrophage ap-
proach further demonstrated that a blockade of SIRPa coupled
with priming of FcRs with tumor targeting IgG’s is efficacious
in shrinking established tumors.*"

Multivalent 8-amino-acid “nano-Self” antagonists have
recently been made based on CD47’s f-hairpin loop that
binds SIRPa. Variants of the peptides potently blocked CD47-
SIRPa interactions and increased internalization of antibody-
opsonized human erythroleukemia cells by human macro-

phages at concentrations as low as § nM.*’ Additional
observations in the same study included further evidence for
CD47 on the macrophage interacting in cis with SIRPa on the
same cell, conveying an autoinhibition signal in agreement with
earlier observations.”’ However, not all studies with soluble
CD47 polypeptides added to cultured macrophages have
shown increased phagocytosis. Curiously, an early investigation
with bacterially expressed human-CD47 protein reported that
soluble CD47 reduced in vitro phagocytosis by mouse
macrophages of colloidal emulsions (for 2 h).” Subsequent
studies by other groups have shown that the CD47 interaction
improves with a post-translational N-terminal modification
that is lacking in bacteria,*’ that the particular human—mouse
CDA47-SIRPa interactions are especially weak, and that IgG
opsonization of the target is likely needed to reveal the effect of
CD47-SIRPa blockade. All of these remain important
considerations for the field going forward.

B CONCLUSIONS

The SIRPa-CD47 axis is an increasingly appealing candidate
for a diverse range of delivery and therapy applications.
Nanoparticles and viruses that display CD47 or related
peptides are recognized as “Self” by macrophages, delaying
phagocytosis of these particles, prolonging circulation, and
increasing on-target delivery of dyes, drugs, and genes. Further
studies are needed to understand pro-phagocytic signals (i.e.,
opsonization and protein corona formation) on these nano-
particles and viruses. Soluble antagonists of this axis continue
to be developed and explored to enhance phagocytosis,
particularly of cancer cells, and illustrate the dual uses of
developments in this area of research. Challenges remain in
limiting off-target effects after systemic injection of antagonists
such as anti-CD47 IgG. At least one recent and interesting
effort used nanoparticles to both block CD47 and opsonize
cancer cells,®® but of course this requires nanoparticle
avoidance of macrophages as well as access to tumor cells.
Small size helps with permeation into solid tumors, and a
recently synthesized and compact, cyclic version of “nano-Self”
was shown to enhance engulfment in vitro of mAb-targeted
melanoma by primary macrophages, setting the stage for
efficacy tests in vivo.
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