Quantitative Imaging and Analysis for Biologists (QIAB) - 2020

Location: Online (BlueJeans or Zoom)

Lecture Dates & Times: Tuesdays & Thursdays, Sept. 29 – Nov. 12, 10 am – 12 noon

TA Office Hours: Fridays 11 am - noon or by appointment at https://bluejeans.com/5693391678/

Organizer: Andrea Stout (astout@pennmedicine.upenn.edu) and Melike Lakadamyali

(melikel@pennmedicine.upenn.edu)

TA: Liz Gallagher (Elizabeth.Gallagher@pennmedicine.upenn.edu)

Required materials: a laptop with the free software Fiji (http://imagej.net/Fiji#Downloads) installed.

Schedule of topics and speakers

Day	Tuesday 9/29/20	Thursday 10/2/20	Tuesday 10/6/20	Thursday 10/8/20
Speaker	Andrea Stout	Andrea Stout	Andrea Stout	Melike Lakadamyali
Topic for 10- 12 lecture	Fundamentals: light, image formation, fluorescence; widefield vs confocal	Image data properties: signals, noise, sampling.	Intro to Fiji & digital data: data types, display adjustments, and annotations	Fluorescence labeling, probes; sample prep for live or fixed cells,
Activity for this week	Canvas quiz on optics and acquisition		Fiji Exercises – set 1	

Day	Tuesday 10/13/20	Thursday 10/15/20	Tuesday 10/20/20	Thursday 10/22/20
Speaker	Andrea Stout	Andrea Stout	Andrea Stout	Andrea Stout and Sandra Maday
Topic for 10- 12 lecture	Processing topics and simple measurements	Intro to macros in ImageJ and Fiji	Introduction to segmentation and object-based measurements	Machine learning with Fiji and ilastik
Activity for this week	Fiji Exercises – set 2		Fiji Exercises – set 3	

Day	Tuesday 10/27/20	Thursday 10/29/20	Tuesday 11/3/20	Thursday 11/5/20
Speaker	Andrea Stout	Melike Lakadamyali	Andrea Stout	Mustafa Mir and Nicolas Plachta
Topic for 10- 12 lecture	Working with 3D and 4D data in Fiji; Odds & Ends	Tracking concepts (simple object tracking, manual tracking, Trackmate)	Quantitative colocalization basics as implemented in Fiji	Advanced methods (super-res, FRET, FLIM, FCS)
Activity for this week	Fiji Exercises – set 3 continued		Fiji Exercises – set 4	

Day	Tuesday 11/10/20	Thursday 11/12/20
Topic for 10-12 lecture	5-minute student presentations	

Grading for the course:

Your final grade for the course will be based on the following:

Participation: This includes participation during class sessions as well as on Canvas quizzes and Fiji exercises

Out-of-class homework: The Fiji exercises will include questions to be answered on Canvas and some file submissions. We will not assign grades but we will keep track of each student's submissions.

End-of-class presentations: The last two class sessions are set aside for student presentations: each student must give a <u>very short</u> (no more than 10 minutes) presentation that is either (a) an explanation of an image analysis protocol that makes use of one or more methods discussed in this class; or (b) an instructional presentation on how to use a Fiji plugin or other open source software (such as CellProfiler) that we did not cover in class.