BBCB5080- Principles of Macromolecular Biophysics. 2024 Schedule

Director: Kim Sharp, sharpk@upenn.edu

Co-director: Sergei Vinogradov, vinograd.upenn@gmail.com

Time: Wed, Thurs, 1.45-3.15pm, 255 Anatomy-Chemistry Building

This is an introductory course on Macromolecular Biophysics. The first part of the course covers the physical fundamentals underlying the structure and behavior of macromolecules necessary for biological function. The second part of the course covers the principle biophysical methods used to study macromolecules. The third part of the course examines, through a case study approach, how novel, yet still **rigorous and reproducible** research is conducted. For each case 2 students will present a small set of papers (usually 2 to 3) representing different sides of a scientifically controversial, possibly unsolved, topic in macromolecular biophysics. Students can choose from a set of pre-selected topics, or from their own suggestions (with approval from the director). The presentations will emphasize the dynamic, often uncertain dialogue of experiment, interpretation and critique involved in rigorous and reproducible scientific discovery. The presentation will be 'contemporaneously historical', i.e. based on the state of knowledge at the time of the papers. It can use knowledge of earlier literature, but not of research that was unknown at the time. Most typically draw from papers and letters in general journals like Science or Nature. They thus are written to be understood by people outside the specific area of the articles, and without extensive background literature reading, (like BBCB508 students!)

There is no textbook that covers all of the class, as much of the material is based on current research and is too new for textbooks. However Van Holde, K. E. et al. *Principles of Physical Biochemistry*, 2nd Edition, covers much of the material. A copy to view is available from KAS.

Lecture notes and other class material, include topics/papers for the case studies will be posted as the course progresses

Grade: Homework Assignments: 40%, Exam 30%, Presentations/Participation 30%.

Date	Topic	Lecturer
	Part 1: The Physics of Macromolecules	
W aug 28	Molecular Interactions: Bonding, Nonpolar, Polar, Electrostatics	Sharp
R aug 29	Equilibria: Folding, Structure and Stability	Sharp
W sep 4	Equilibria: Binding and Allostery	Sharp
R sep 5	Kinetics: Theory	Sharp
W sep 11	Kinetics: Experimental	Kohli
R sep12	Kinetics: Enzymes, Inhibitors and more	Kohli
	Part 2: Biophysical methods for studying macromolecules	
W sep 18	Optical Spectroscopy (UV, Fluorescence, CD)	Vinogradov
R sep 19	Optical Spectroscopy (UV, Fluorescence, CD)	Vinogradov
W sep 25	Scattering: Determination of structure	Gupta
R sep 26	Super Resolution Microscopy	Lakadamyali
W oct 2	Single Molecule Biophysics	Lakadamyali
R oct 3	Fall break	
W oct 9	Cryo Electron Microscopy: Principles of EM imaging	Murakami
R oct 10	Cryo Electron Microscopy: Single Particle	Murakami
W oct 16	Cryo Electron Microscopy Tomography	Chang
R oct 17	Hydrogen Exchange	Black
W oct 23	Diffraction 1: Determination of Structure	van Duyne
R oct 24	Diffraction 2: Determination of Structure	van Duyne
W oct 30	NMR	Sgourakis
R oct 31	NMR	Sgourakis
	Part 3: Rigor and Reproducibility in Biophysical Research: Examination of Current Scientific Controversies	
W nov 6	Topics: see list in separate document handed out at first class	Pair 1, 2
R nov 7		Pair 3, 4
W nov 13		Pair 5, 6
R nov 14		Pair 7, 8
W nov 20		Pair 9, 10
R nov 21		Pair 11, 12
W nov 27	Thanksgiving- no class	Thanksgiving- no class
R nov 28	Thanksgiving- no class	Thanksgiving- no class
W dec 4	Final Exam Due	
R dec 5	BMB Retreat- No class	BMB Retreat- No class