Proteomic strategies for identifying resistance mechanisms and therapeutic targets in lymphoma

Megan S. Lim MD PhD

Professor, Director of Hematopathology Joint (HUP and CHOP)

> GENERAL SESSION 3 May 10, 2019

Abramson Cancer Center

Disclosure

• No relevant items to disclose

• GENOMENON: Co-Founder and Advisor

Paradigm for Research

Outline

- Discovery of novel targetable ALK-regulated cytokine network through integration of N-glycoproteomic and functional genomics
- Functional validation of novel target (IL31R β) in ALCL

• Conclusions and broad applications for identifying novel CAR-T targets in de novo disease and resistance

LC-MS/MS-based proteomics

- Unambiguously identify proteins
- Femtomolar sensitivity
- Unbiased

Protein ID

m/z, amu

N-glycoproteomic signatures of lymphoma

N-Glycoproteins are excellent lymphoma biomarkers

- Glycosylation is a common post translational modification
- Glycoproteins are secreted or expressed in the cell surface
- Most CD markers recognize glycoproteins
- Good target for biomarker discovery

13,000 predicted TM proteins3100 membrane glycoproteins UniProt

7

Hypothesis

Glycoproteins can be used as biomarkers for early disease detection, diagnosis, monitoring and harnessed as a therapeutic target in lymphoma

Aims

 Compendia of glycoproteomic profiles for distinct lymphoma cell lines using LC-MS/MS

• Functional study of candidate glycoproteins

Unbiased N-glycoproteomics of lymphoid neoplasia

36 well-characterized human cell lines

14 subtypes of lymphoid neoplasia

WHO entities	Lineage	Origin	Ν
T-ALL	Т	Precursor T	1
ALCL, ALK +	Т	Mature T	5
ALCL, ALK -	Т	Mature T	2
MF	Т	Mature T	1
Sézary syndrome	Т	Mature T	1
Aggressive NK-cell leukemia	NK	Mature NK	3
MCL	В	Pre-GC	3
BL	В	GC	3
DLBCL	В	GC	1
PMBL	В	GC	2
FL	В	GC	6
Classical HL	В	GC	3
NLPHL	В	GC	1
Myeloma	В	Post-GC ¹⁰	4

Glycoproteomic Profiling By Solid Phase Extraction of

Consensus N-glycosylation motif analysis

- 1905 unique 11mers
- N[115] in the center

Motif #	Count	Fold Inc.*
1	1080	8.88
2	59	25.87
3	703	10.37
4	24	19.89

Fold Inc. = Fold Increase over background sequence data

xxxmotif-xxxx

Schwartz et al. (2005). Nature Biotech. v23(11):1391-1398.

N-glycoproteins identified in 36 cell lines N-glycoproteins CD markers **Detection of virtually all CD proteins** currently used for diagnostic evaluation of lymphoid neoplasia TAIL OF CLUE WE SETAN MY NOT BY BOT DWBY ET CHI PHI M

T/NK cell lymphoma cell lines

log2(normalized spectral counts)

NPM-ALK+ ALCL as a biologic tumor model for functional studies

Leverage Integrative Large-Scale Data Transcriptome and N-Glycoproteome

Genomics (24,000) ↓

Transcriptomics (100,000)

Proteomics (1,000,000)

Investigation of ALK "regulome" by integrating N-glycoproteomics and functional genomics

Cytokine/receptor signaling pathways are regulated by ALK activity in ALK+ALCL

Integrated N-glycoproteomic and transcriptomic data

A distinct cytokine-mediated protein network regulated by ALK

using ALK-dependent cytokine receptors

Validation: A distinct cytokine signature is characteristic of ALK+ ALCL

- IL2Rα (CD25)
- IL31Rβ (Oncostatin M receptor)

Potential novel biomarkers

Oncostatin M Receptor (IL31R β) in ALK+ ALCL

Position	Sequence
176	NIQNN*VSCYLEGK
326	SVNILFN*LTHR
380	MMQYN*VSIK
491	ILFYNVVVENLDKPSSSELHSIPAPAN*STK
580	NVGPN*TTSTVISTDAFRPGVR

IL31R β is expressed in ALK+ALCL

56 primary biopsies of ALCL

X² = 20.16 p<0.001

24

IL31R β and OSM expression is ALK-dependent and mediated via STAT3

25

NPM-ALK regulates IL31R β in a kinase dependent manner

Real time RT-PCR

*** P<0.001 by student T-test

CRISPR-Cas9 sgRNA genome-wide vulnerability

Weinstock D, Ngo S, Root, D

Cytokine receptor pathways are exquisite vulnerability targets in ALK+ALCL

Markov Chain Monte Carlo Simulation

IL31Rβ contributes to oncogenesis in ALK+ALCL

IL31Rβ knockdown abrogates tumor growth in ALK+ALCL xenotransplants

Conclusions and Implications

- Largest compendium of N-glycoproteins in lymphoma
 1,115 glycoproteins, including 198 CD markers
- N-glycoprotein signatures classify lymphoid neoplasia according to:

Lineage, Cell of origin, WHO subtypes

- Integrated N-glycoproteomics and transcriptomics are complementary
- A distinctive cytokine/receptor-JAK-STAT signaling network regulated by ALK

IL31R β are pathogenetically-relevant vulnerable targets

Rolland D et al., Proc Natl Acad Sci, 2017

Model of OSM-OSMR signaling in ALCL and acquired resistance

OSMR is regulated by ALK in EML4-ALK+ lung cancer and upregulated in acquired resistance

Future Directions Mechanisms and biomarkers of CAR-T therapy resistance

Phosphoproteome

5000-6000 proteins 35000 phosphopeptides 2500 phosphoproteins

Acknowledgements

Kojo SJ Elenitoba-Johnson MD

<u>U of Pennsylvania</u>

Delphine Rolland, Pharm D PhD John Basappa PhD Kaiyu Ma PhD Ozlem Onder PhD

Dana Farber CI /Broad

David Weinstock MD David Root PhD Samuel Y. NG PhD

Funding

NIH R01DE119249 NIH R01CA136905 NIH R01CA140806 NIH F31CA171373 COG Translational Award COG Young Investigator Award University of Michigan Cancer Center University of Pennsylvania

<u>U of Michigan</u>

Scott McDonnell PhD Venkatesha Basrur PhD Kevin Conlon MS Carla McNeal-Schwalm MD Alexey Nesvizhskii PhD Damian Fermin PhD Noah Brown MD Nathanael G Bailey, MD Carlos Murga-Zamalloa MD Steven Hwang BS Mahmoud A ElAzzouny, PhD Charles F Burant, MD., PhD Lili Zhao, PhD Gilbert S. Omenn MD

Seoul National University

Yoon-Kyung Jeon MD PhD