

Kinetic Modeling in PET: Madness in the Methods or Method to the Madness

Richard E. Carson, Ph.D.

December 14, 2020

Quantitative Brain PET

- Kinetic Modeling 101
 - Basic modeling methods
- Tracer Development and Validation
 - SV2A Tracer ¹¹C-UCB-J
 - Nonhuman primates
 - Human studies
- Using modeling to separate blood flow and binding changes
- When is modeling important?
 - When might simplified methods be misleading ...
- Simplifications for Brain Imaging
 - Standard Uptake Value Ratio (SUVR) vs. Distribution Volume Ratio (DVR)
 - Time dependent relationships
- Transient Equilibrium
 - Two wrongs can make a right
- Closing thoughts

Radioactivity Patterns Change with Time

- Tracer: ¹¹C-AFM
- Target: Serotonin Transporter
- Analog of Selective Serotonin Reuptake Inhibitors (SSRI)
 - Prozac, Zoloft,...
- Time-varying distributions
- Is there a best single time to scan?
- What can we do with dynamic data?
- How to analyze this?

Time (min)	0-10	40-60	90-120		
Flow information	+++	++	+		
SSRI information	+	++	+++		

fet Goals of PET Modeling

- Understand the relationship between the tissue measurements and the underlying physiology (blood flow, metabolism, etc.)
- Account for the effects of tracer availability (input function).
- Determine what parameters can be measured
- Devise study methodology
- Prove that the method measures the parameter(s) of interest.
- Verify that the method is not influenced by other parameters.
- Produce images of physiological parameters (parametric images)
- Produce a simple and accurate patient protocol.

pet

Important Kinetic Parameters for Reversible Tracers

- K_1 tracer delivery
 - Blood flow information
- $V_{\rm T}$ volume of distribution (DV)
 - Ratio at equilibrium of total tissue concentration to reference fluid
 - metabolite-corrected plasma concentration
 - Units: mL plasma / cm³ tissue
 - Includes free, non-specifically bound, and specifically bound components.
 - Useful for tracers with reversible binding
- DVR distribution volume ratio
 - $V_{\rm T}$ in ROI / $V_{\rm T}$ in reference region
- BP_{ND} binding potential
 - Specific binding as ratio to nondisplaceable uptake
 - DVR + 1
- All these values relate directly to physiological parameters:
 - Receptor concentrations and affinities and blood flow

- Fit of dynamic data
 - Need tissue time-activity curve and plasma time-activity curve
 - Fit data to appropriate model
 - Determine V_T from model parameters
 - Model-based method to extrapolate equilibrium conditions from bolus data
 - 2 tissue compartment model:

 $V_{T} = K_{1} / k_{2} (1 + k_{3} / k_{4})$

• 1 tissue compartment model (pixel-by-pixel)

 $V_{T} = K_{1} / k_{2}$

- Simplified Reference Tissue Model
 - Fit for BP_ND directly using TAC from region with no specific binding
 - Plasma input function inferred mathematically from reference TAC

Methods to estimate $V_{\rm T}$ and BP

- Graphical analysis Logan plot
 - Transform data to produce a straight line
 - Use part of the data (varies between regions)
 - V_T = Slope of {integral(C_T) / C_T } versus {integral(C_p) / C_T }
- Constant infusion
 - At equilibrium, V_T = the ratio of tissue to metabolitecorrected plasma
 - + $V_{\rm T}$ and BP taken directly from the data

Neuroreceptor Imaging The hard way

- Collect arterial input curve
- Collect scan data (counts)
- Reconstruct multiple images over time
- Define regions-of-interest
- Create time-activity curves
- Do least squares fit to the model
- Extract volumes of distribution and binding potentials

fet

Radioactivity Images vs. Parametric Images

- K_1 Blood flow
- $V_{\rm T}$ Volume of distribution
 - Total binding to serotonin transporters plus nonspecific uptake

	Ra	adioactivity Image	es	Parametric Images				
		and the second s			C C			
Time (min)	0-10 min	40-60 min	90-120 min	К1	V _T			
Flow information	+++	++	+	+++++				
SSRI information	+	++	+++		++++			

Tracer: ¹¹C-AFM

Reference Tissue Models

- Infer the input function based on the time course of a reference region
- Neuroreceptor studies: reference region has no receptors
- Estimates relative delivery and Binding Potential ($BP=B_{max}/K_d$)
- C(t) ROI TAC
- C'(t) Reference region TAC
- For one tissue-compartment:

 $dC/dt = K_1 C_p - k_2 C$

 $dC'/dt = K_1' C_p - k_2' C'$

- Eliminate C_p (derive)
- $C(t) = R_1 C'(t) + R_1 (k_2' k_2) C' * exp(-k_2 t)$
- R_1 Relative delivery (K_1 / K_1')
- $BP_{ND} = R_1 k_2' / k_2 1$

SRTM Images

Relative Delivery and Binding Potential

[¹¹C]Raclopride: D₂ Receptor

fet

[¹¹C]SCH2339: D₁ Receptor

Logan Graphical Analysis

- Appropriate for tracer with reversible binding
- Derived from model with one tissue compartment
- \bullet Transforms the data so the final slope is V_{T}
- $\int C_T dt / C_T = V_T \int C_P dt / C_T + b \qquad t > t^*$
- Model independent

Logan Graphical Analysis [¹⁸F]FCWAY

Tracer Infusion for Equilibrium Measurements

- Administer tracer as bolus plus continuous infusion
- Achieve true equilibrium in blood and all brain regions
- Model-independent
- Determine V_T directly from concentration ratio of tissue region-of-interest (ROI) to plasma
 - $BP_P = V_T(ROI) V_T(BKG)$ proportional to B_{avail} / K_d
- Determine BP_{ND} from tissue concentration ratios
 - $BP_{ND} = (ROI / BKG 1) \text{ proportional to } B_{avail} / K_d$
 - No blood
- For certain tracers, rapid equilibrium achieved if proper bolus fraction is chosen

[¹⁸F]Cyclofoxy Tissue Activity Bolus + Infusion

fet

۲he Challenge

- If we thoroughly understand how a tracer works...
- Can we produce a simple, clinically practical protocol that is patientfriendly, suitable for multi-center trials...
- Without losing too much accuracy...
- So that the practical advantages, which allow us to study many more patients, clearly outweigh any quantitative disadvantages.

Quantitative Brain PET

- Kinetic Modeling 101
 - Basic modeling methods
- Tracer Development and Validation
 - SV2A Tracer ¹¹C-UCB-J
 - Nonhuman primates
 - Human studies
- Using modeling to separate blood flow and binding changes
- When is modeling important?
 - When might simplified methods be misleading ...
- Simplifications for Brain Imaging
 - Standard Uptake Value Ratio (SUVR) vs. Distribution Volume Ratio (DVR)
 - Time dependent relationships
- Transient Equilibrium
 - Two wrongs can make a right
- Closing thoughts

fet

Developing and Validating a Novel Brain Tracer

- Identify target
- In vitro evaluations
- Radiochemistry
- Dynamic scans
- Arterial blood samples
- Regional or voxel analysis
- Compartment modeling
- Test/retest
- Blocking studies
- In vivo / ex vivo validations

SV2A – Synaptic Density

Synaptic Vesicle Glycoprotein 2

- Component of synaptic vesicles, located in presynaptic terminals
- Modulates synaptic exocytosis and endocytosis`
- Radioligand binding to SV2 may be useful for measurement of synaptic density

[‡]Mutch et al., 2011; [†]Takamori et al., 2006

SV2A in Epilepsy

- Validated target of antiepileptic drug levetiracetam (LEV; Keppra[®])
- Immunocytochemistry and Western blot analysis: <u>reduced SV2A</u> in hippocampus and temporal lobe in TLE with HS (similar results in FCD)
- SV2A in tumor and peritumoral tissue correlated to clinical response to LEV in patients with glioma (response prediction with 91% accuracy)
- Homozygous mutation in SV2A gene results in intractable epilepsy

Van Vliet et al. 2009, *Epilepsia*; Toering et al. 2009, *Epilepsia*; Feng et al. 2009, *J Mol Neurosci*; De Groot et al. 2011, *Neurology*; Serajee & Hug. 2015, *Pediatr. Neurol.*

م SV2 as Biomarker for Synaptic Density

- Fyn inhibitor AZD0530 reversed memory deficients in AD mouse model
- Rescue of learning and memory impairment was coupled to restoration of synaptic density (no change in Aβ)
- Recovery of synaptic density was demonstrated using SV2 immunohistochemistry

Kaufman et al., 2015

Assay/target (37°C)	K_i (nM)				
recombinant human SV2A	7				
recombinant human SV2B	1995				
recombinant human SV2C	100				

H ₁	α_{2A}	α _{1A}	M ₂	σ 1	KOR	D ₂	5-HT _{1A}	5-HT _{2A}
3	7	-4	2	4	3	2	-2	3

% inhibition of radioligand binding to the targets when tested at <u>10 μ M</u> in duplicate

[†]Performed at UCB Pharma (Braine-I'Alleud, Belgium) and at CEREP (Celle-I'Evescault, France)

م Radiolabeling

• C-[¹¹C]methylation via Suzuki cross-coupling

9% yield @ EOS based on ${}^{11}CH_3I$; >98% CP & RCP; S.A. 15.3 \pm 7 mCi/nmol (566 \pm 258 MBq/nmol) @ EOS (n = 16).

Nabulsi et al, J Nucl Med, 2016

1.0 0.8 Parent Fraction 0.6 39 ± 5% 0.4 at 30 min 24 ± 5% 0.2 at 90 min 0.0 100 80 0 20 40 60 Time (min) $f_p = 46 \pm 2\% (n = 10)$ Log P = 2.52 ± 0.03 (n=9)

× Cerebellum • Frontal • Pons • Putamen

Caudate

0

30

60 MIN 90

120

أثورية 11C-UCB-J Blocking with LEV (10 mg/kg)

pet ¹¹C-UCB-J Blocking with Levetiracetam

Pre-blocking with 10 mg/kg LEV; ~ 65±3% occupancy (n=2)

المورد Validation study: SV2A vs. Synaptophysin (SYN)

Western blot analysis

pet

SV2A is valid alternative to SYN

Correlation in vitro / in vivo SV2A

pet

Good regional correlation *in vitro* and *in vivo* SV2A binding Regional differences *in vivo* ¹¹C-UCB-J binding relate to SV2A density

Human Arterial Input Function and Radiolabeled Metabolites

Regional Distribution of ¹¹C-UCB-J

Quantification of Distribution Volume (V_T)

Region Definition and TAC Computation

þet

Outcome Measure Computation

fet

for tTest-Retest Reliability of V_{T} [%]

Measure	Subject	WM	CN	СВ	FCx	OCx	PCx	Put	TCx	Thal
Difference (%)	Subj. 1	-4	0	-1	-2	-6	-4	-2	-4	0
	Subj. 2	3	5	2	3	3	5	4	4	6
	Subj. 3	-7	-9	5	-1	1	1	-7	-4	-1
	Subj. 4	-3	-2	1	-2	-5	-5	2	-3	-1
	Subj. 5	2	0	-1	5	1	1	5	2	4
	Mean	-2	-1	1	1	-1	0	0	-1	2
Absolute Variability (%)	Mean	4	3	2	3	3	3	4	3	3

Difference: (RETEST-TEST)/((RETEST+TEST)*0.5)*100% Variability: |RETEST-TEST|/((RETEST+TEST)*0.5)*100%

Parametric Maps of V_{T} Calculated on Voxel Level

 $V_{\rm T}$ – Volume of distribution

 Total binding to SV2A plus nonspecific uptake

Quantitative V_{T} images

Finnema et al, JCBFM, 2017

Displacement Studies with Levetiracetam

• Baseline and displacement study

fet

- Very helpful to have approved specific blocking drug
- Levetiracetam (Keppra, 1500 mg i.v. infusion 60-65 min)

Finnema et al, Sci Transl Med, 2016

ÁQL SV2A/Synaptic Density Validation Still a Long Way to Go

- Technical issues:
 - Choice of outcome measures
 - Choice of a reference region
 - C-11 vs. F-18
- SV2A as a general marker of synaptic density
 - # of SV2A per vesicle and # of vesicles per synapse
 - Validation of SV2A as a synaptic density marker in health and diseases
 - Effect of vesicle exocytosis and recycling on SV2A binding
- Clinical interpretation:
 - · Utility in specific diseases to monitor progression
 - Alzheimer's disease, epilepsy, Depression, PTSD, Schizophrenia, Cannabis Use, Cocaine Use, Parkinson's, Alcohol dependence, Multiple Sclerosis, Huntington's Disease, Autism Spectrum Disorder
 - · Imaging biomarker of synaptic regrowth
 - NCT03493282: Effect of CT1812 Treatment on Brain Synaptic Density
 - Utility in animal models: Epilepsy, AD, depression, stroke

fet

SV2A/Synaptic Density Technical Issues

Choice of outcome measures

- V_T
 - Needs arterial data, includes nonspecific binding
- + V_T / f_p correct for protein binding
 - · Relevant if there are group differences or substantial intersubject variability in free fraction
- BP (binding potential)
 - Is there an ideal reference region with no specific binding?
- DVR (Distribution volume ratio)
 - Normalize to a suitable region

Choice of a reference region

- Centrum semiovale
 - Some specific binding
 - No difference seen in AD, epilepsy, and PD
 - Differences seen in MDD
 - CS is small, so adds noise
 - Sensitive to partial volume effect
- Disease-specific normalizing region
 - Cerebellum in AD

fet F-18 SV2A Ligand: SynVesT-1

 ¹⁸F-SynVesT-1 vs. ¹¹C-UCB-J: Similarly high brain uptake, fast tissue kinetics and regional distribution

Quantitative Brain PET

- Kinetic Modeling 101
 - Basic modeling methods
- Tracer Development and Validation
 - SV2A Tracer ¹¹C-UCB-J
 - Nonhuman primates
 - Human studies

Using modeling to separate blood flow and binding changes

- When is modeling important?
 - When might simplified methods be misleading ...
- Simplifications for Brain Imaging
 - Standard Uptake Value Ratio (SUVR) vs. Distribution Volume Ratio (DVR)
 - Time dependent relationships
- Transient Equilibrium
 - Two wrongs can make a right
- Closing thoughts

Is the SV2A signal sensitive to neuronal activation?

- SV2A is involved in regulating vesicle release, a complex and highly mediated process involving interactions with other proteins or with Ca²⁺
- Tracer binding sites may become more or less accessible during active vesicle release. If so, changes in ¹¹C-UCB-J binding would reflect influence of local activity as well as synaptic vesicle number.
- Need modeling to separate blood flow effects from changes in binding

fet Study Design

- 7 healthy subjects
- 2 [¹¹C]UCB-J scans
 - 60 min. baseline
 - 60 min. with continuous intermittent visual activation
 - 8Hz flickering radial checkerboard
- 1 fMRI scan with checkerboard stimulation
 - 6 x 30s on/off (fMRI-optimized)
 - 3 x 3' on / 2' off (PET-optimized)

X

- 35% increase in K1 in primary visual cortex.
- No change in V_T or BP_{ND} .

→ ¹¹C-UCB-J binding is a stable *in vivo* measure of SV2A density despite increased vesicle release.

Fig. 4

results

- fMRI BOLD increase in V1 and LGN.
- PET K1 increase in V1.
- Change in K1 is correlated with change in fMRI BOLD signal in visual cortex.
- \rightarrow K1 tracks brain activity.

Smart et al, JCBFM, 2020

Synaptic Density in Alzheimer's Disease

Quantitative Brain PET

- Kinetic Modeling 101
 - Basic modeling methods
- Tracer Development and Validation
 - SV2A Tracer ¹¹C-UCB-J
 - Nonhuman primates
 - Human studies
- Using modeling to separate blood flow and binding changes

• When is modeling important?

- When might simplified methods be misleading ...
- Simplifications for Brain Imaging
 - Standard Uptake Value Ratio (SUVR) vs. Distribution Volume Ratio (DVR)
 - Time dependent relationships
- Transient Equilibrium
 - Two wrongs can make a right
- Closing thoughts

Amyloid Example Where Modeling Helps

FIGURE 6. BP_{ND} and SUVr (60–90 min after injection) for ¹¹C-Pittsburgh compound B scans of Alzheimer disease patients at 2 time points 2–4 y apart (horizontal axes represent months after baseline scan). Patients did not receive antiamyloid therapy during interval between scans. SUVr shows a small but significant counterintuitive decrease in amyloid load, whereas BP_{ND} remains unchanged.

- Test-retest study
- Less variability in modeling results

Forward to the Past: The Case for Quantitative PET Imaging

Adriaan A, Lammertsma

Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands

J Nucl Med 2017; 58:1019-1024 DOI: 10.2967/jnumed.116.188029

fet Goals of PET Modeling

- Understand the relationship between the tissue measurements and the underlying physiology (blood flow, metabolism, etc.)
- Account for the effects of tracer availability (input function).
- Determine what parameters can be measured
- Devise study methodology
- Prove that the method measures the parameter(s) of interest.
- Verify that the method is not influenced by other parameters.
- Produce images of physiological parameters (parametric images)
- Produce a simple and accurate patient protocol.

fet

⁵ Studying Drug Effects: Input Functions

- Drug and tracer target the same site
- We expect dose-dependent reductions in specific tracer binding following administration of a competing drug

- Typically, blocking drugs reduce tracer in tissue, and increase tracer in the blood
 - Increased bioavailability (the input function)
 - Increased nonspecific uptake
- Net effect depends on relative magnitude of specific and non-specific uptake, and tracer's kinetics

DescriptionMicroglial Activation and DepletionResults withModeling

Hillmer et al, Eur J Nuc Med Res, 2017

DescriptionMicroglial Activation and DepletionResults withoutModeling

Magnitude of change reduced without modeling

Hillmer et al, Eur J Nuc Med Res, 2017

Prain Enzyme Inhibitor Study SUV Images

Variation in specific binding among brain regions

Brain Enzyme Inhibitor Study Differences Among Brain Regions <u>Without</u> Modeling

Baseline Blocking

- Occipital: large decrease
- Temporal: small decrease
- Frontal: small increase!
- ??

Prain Enzyme Inhibitor Study

Differences Among Brain Regions Without Modeling

Quantitative Brain PET

- Kinetic Modeling 101
 - Basic modeling methods
- Tracer Development and Validation
 - SV2A Tracer ¹¹C-UCB-J
 - Nonhuman primates
 - Human studies
- Using modeling to separate blood flow and binding changes
- When is modeling important?
 - When might simplified methods be misleading ...
- Simplifications for Brain Imaging
 - Standard Uptake Value Ratio (SUVR) vs. Distribution Volume Ratio (DVR)
 - Time dependent relationships
- Transient Equilibrium
 - Two wrongs can make a right
- Closing thoughts

pet Simplifications for Brain Imaging

- Use our understanding of the model to produce a protocol and analysis that balances patient simplicity with physiological accuracy
- Find a reference region for normalization skip the arterial samples
- Look for a static time period that best correlates with the "gold standard" distribution volume ratio DVR
- The holy grail: Tissue-to-reference ratio: **SUVR**
- Apply in patient populations and clinical trials

DVR vs. SUVR ¹⁸F-MK6240

Regression	Coefficient	β- <i>(SE)</i>	95% confidence interval	R ²
SUVR (40-60) vs. LGA (full)	Slope	0.814 (0.004)	0.806 to 0.822	0.96
	Intercept	0.245 (0.005)	0.235 to 0.255	
SUVR (50-70) vs. LGA (full)	Slope	0.934 (0.004)	0.926 to 0.941	0.971
	Intercept	0.131 (0.005)	0.122 to 0.141	
SUVR (60-80) vs. LGA (full)	Slope	1.014 (0.004)	1.006 to 1.022	0.972
	Intercept	0.048 (0.005)	0.038 to 0.058	
SUVR (70-90) vs. LGA (full)	Slope	1.073 (0.005)	1.064 to 1.082	0.970
	Intercept	-0.015 (0.006)	-0.026 to -0.004	
SUVR (40-60) vs. MRTM2 (full)	Slope	0.757 (0.004)	0.748 to 0.766	0.947
	Intercept	0.299 (0.006)	0.288 to 0.310	
SUVR (50-70) vs. MRTM2 (full)	Slope	0.869 (0.004)	0.861 to 0.878	0.960
	Intercept	0.192 (0.006)	0.181 to 0.203	
SUVR (60-80) vs. MRTM2 (full)	Slope	0.945 (0.004)	0.937 to 0.954	0.964
	Intercept	0.112 (0.006)	0.101 to 0.123	
SUVR (70-90) vs. MRTM2 (full)	Slope	1.002 (0.005)	0.993 to 1.011	0.964
	Intercept	0.052 (0.006)	0.040 to 0.063	

Lohith et al, JNM, 2019

Betthauser et al, JNM, 2019

Simplifying ¹¹C-UCB-J SV2A Imaging

- 90 min scan on the HRRT scanner
 - Bolus injection over 1 min.
 - Arterial blood sampling and metabolite analysis for gold standard values (V_T and BP_{ND}) Reference region = Centrum semiovale
- 2 datasets

Óet

- Healthy controls (HC)
- Alzheimer's disease (AD)
- Tissue-to-plasma ratio (a.k.a. the <u>apparent</u> volume of distribution, $V_{T(A)}$) compared to V_T
 - Tissue-to-plasma ratio <u>at equilibrium = V_T</u>
- Tissue-to-reference ratio (a.k.a. SUVR) compared to DVR
 - SUVR = $V_{T(A)}(ROI) / V_{T(A)}(Reference)$
 - SUVR-1 compared to BP_{ND}

for ¹¹C-UCB-J: Healthy Control Data Tissue-to-Plasma Ratio

V_{T(A)} (60-90 min) substantially overestimates V_T

• Why?

• Plasma and tissue are not at equilibrium

for ¹¹C-UCB-J: Healthy Control Data Tissue-to-Reference (SUV) Ratio

- SUVR-1 (60-90 min) very similar to BP_{ND}
 - % difference between SUVR-1 and BP_{ND} -2 ± 7%

fet ¹¹C-UCB-J: SUVR in HC/AD comparison

- Hippocampus SUVR-1 was similar to BP_{ND}
 - 4 ± 10%
- The HC-AD group difference was significant using both BP_{ND} and SUVR-1

	HC (<i>n</i> =7)	AD/MCI (<i>n</i> =9)	P-value
BP _{ND}	1.43 ± 0.31	0.82 ± 0.57	0.024
TTR-1	1.45 ± 0.37	0.87 ± 0.59	0.041

• Slightly lower significance

for ¹¹C-UCB-J agreement between SUVR-1 and BP_{ND} is time-dependent

- Same as virtually every successful reversible PET tracer
- What's going on?

Naganawa et al, JNM, 2020

Quantitative Brain PET

- Kinetic Modeling 101
 - Basic modeling methods
- Tracer Development and Validation
 - SV2A Tracer ¹¹C-UCB-J
 - Nonhuman primates
 - Human studies
- Using modeling to separate blood flow and binding changes
- When is modeling important?
 - When might simplified methods be misleading ...
- Simplifications for Brain Imaging
 - Standard Uptake Value Ratio (SUVR) vs. Distribution Volume Ratio (DVR)
 - Time dependent relationships
- Transient Equilibrium
 - Two wrongs can make a right
- Closing thoughts

pet

For a reversible tracer, following a <u>bolus</u> injection...

- As time proceeds, the tissue:plasma ratio typically rises until a constant ratio is reached
 - Transient equilibrium
- Typically, higher binding regions take longer to reach transient equilibrium
- The tissue:plasma ratio at transient equilibrium (the apparent volume of distribution, $V_{T(A)}$) is greater than the ratio at equilibrium (the true volume of distribution, V_{T})
- The faster the plasma clearance, the greater the difference between $V_{\rm T(A)}$ and $V_{\rm T}$
- Typically, regions with higher V_{T} have a greater bias

A simple simulation: No plasma clearance

$V_{T(A)}$: Apparent volume of distribution

pet

A simple simulation: Slow plasma clearance

$V_{T(A)}$: Apparent volume of distribution

pet

Ó

80

90

A simple simulation: Faster plasma clearance

pet

$V_{T(A)}$: Apparent volume of distribution **SUVR** ROI and reference: More rapid plasma clearance SUVR: More rapid plasma clearance 40 3 Scan here 35 2.5 . DVR 30 • 2 25 V_T 1.5 20 15 $V_{\rm T}(\rm ref)$ 1 10 0.5 5 0 0 20 30 50 60 70 0 10 40 80 90 0 10 20 30 40 50 60 70 Reference ROI Target ROI Ideal reference Ideal Target Ideal SUVR SUVR 🛑

For Equilibrium Overshoot Varies with Binding Level as well as Measurement Time

Following a <u>bolus</u> injection...

• The tissue:plasma ratio at transient equilibrium ($V_{T(A)}$) is greater than the ratio at equilibrium (V_T)

- The faster the plasma clearance, the greater the difference between $V_{\rm T(A)}$ and $V_{\rm T}$
- Regions with higher V_T (typically, the ROI) have a greater bias
- SUVR is the ratio of $V_{T(A)}$ of the ROI to $V_{T(A)}$ of the reference region
- So **SUVR** at transient equilibrium, is positively biased with respect to **DVR**.
 - Maybe a little, maybe a lot...
- But, higher binding regions take longer to reach transient equilibrium
- We can "help" by scanning earlier, before transient equilibrium is achieved

pot Can two "wrongs" make a right?

- If we wait until transient equilibrium is achieved,
 SUVR will overestimate DVR
- If we scan "too early", we can get the right answer...
- Any imaging scenario with
 SUVR = DVR has 2 factors that cancel each other out
 - Transient equilibrium
 - Scanning early

pert

What could possibly go wrong?

- Will we always get the timing right so that the two effects cancel out?
- "Optimal" time depends on the magnitude of tracer binding
 - Best time varies with extent of disease
- Interindividual variation in tracer plasma clearance
 - Age
 - Sex
- Does drug treatment affect plasma clearance of tracer?

fet Closing Thoughts

- Modeling methods permit us to measure many aspects of physiology and pathology *in vivo* with great accuracy.
- Great accuracy may not always be clinically important
- Modeling studies tend to be more complex, so we typically trade accuracy for increased patient numbers (and cost)
- Modeling also helps us develop simpler, more patientfriendly assays.
- The simpler methods come with lots of assumptions that are routinely ignored.

Take-home Messages for Simplified Brain Imaging

- Need well-validated tracers with reliable kinetic models
 - Understand <u>all</u> sources of binding *in* vivo
 - Do these validation studies get the priority they need?
- Use the understanding from a well validated model to optimize each simplified scan protocol
 - So far, we just use models to choose the best time for SUVR measurement
- But, also...
 - Understand the factors that corrupt SUVR
 - Understand the impact of these effects on specific study paradigms
 - Correct them (if needed)
- Don't give up on dynamic scans
 - Automatically correct kinetic effects
 - Provide tracer delivery (flow) information (K_1, R_1)

Acknowledgments

fet

