SINGLE CELL TRANSCRIPTOMICS IN SCHIZOPHRENIA POSTMORTEM BRAIN: MOVING BEYOND BULK LYSATE

Richard Crist June 8th, 2020

Schizophrenia Transcriptomics

- Microarray and RNA sequencing
- Differentially expressed genes across many cortical and sub-cortical regions
 - Dorsolateral prefrontal cortex (dIPFC) (Fillman et al, 2013)
 - Anterior Cingulate Cortex (Zhao et al, 2015; Hong et al, 2013)
 - Superior temporal gyrus (Wu et al, 2012)
 - Hippocampus (Hwang et al, 2013; Kohen et al, 2014)
 - Amygdala (Chang et al, 2017)
- Enrichment of pathways and gene networks
 - Neural development
 - Axon guidance
 - Inflammation and immune-related proteins

CommonMind Consortium

- Largest transcriptomic analysis of schizophrenia
 - 258 cases/279 controls
 - RNAseq in dIPFC
- 693 differentially expressed genes

Cell Diversity in Postmortem Brain

- Brain, like all tissues, consists of many cell types
 - Major cell populations (e.g. astrocytes)
 - Distinct sub-populations (e.g. PVALB+ interneurons)
- Problems in assessing differential expression in bulk lysate
 - Inability to identify which cells are affected
 - Missed expression changes in less common cell types

Schizophrenia Single Cell Transcriptomics

- Immunofluorescence and laser capture microdissection to collect individual populations of cells
- Layer III/V pyramidal neurons (Arion et al, 2017)
 - 72 PFC samples 36 cases/36 controls
 - 100 cells per layer for each sample
 - Expression assessed by microarray
 - 1,783 differentially expressed probe sets corresponding to <u>1,420 genes</u>
- Parvalbumin positive (PVALB+) interneurons (Enwright et al, 2018)
 - Same samples and methods
 - 1,044 differentially-expressed probe sets corresponding to <u>872 genes</u>

Technical Hurdles with Single Cells

Laser capture microdissection

- Low-throughput
- Targeted
- Pooling cells
 - Lost information on variability between cells
 - Collapses sub-populations
- Frozen human brain tissue
 - Freeze/thaw ruptures cell membranes making single cell methods impossible
 - Single cells and nuclei have similar transcriptomes
 - Same relative levels of <u>98% of transcripts (Grindberg et al, 2013)</u>

snRNAseq in Human Brain

REPORTS GENETICS

Neuronal subtypes and diversity revealed by singlenucleus RNA sequencing of the human brain

Blue B. Lake^{1,*}, Rizi Ai^{2,*}, Gwendolyn E. Kaeser^{3,4,*}, Neeraj S. Salathia^{5,*}, Yun C. Yung³, Rui Liu¹, Andre Wildberg², Derek Ga...

- Single nuclei isolated from frozen human brain
 - FACS sort after staining for NeuN
 - One brain, multiple regions, multiple methods
- Fluidigm C1 platform for capture and library preparation
 - Microfluidics chip designed for single cell
 - 96 nuclei per chip

snRNAseq in Human Brain

- Different layers of excitatory neurons
- Distinct interneuron populations
 - PVALB+, SST+, etc
- Regional differences
 - e.g. Ex2 and Ex3 are layer 4 neurons from rostral and caudal areas, respectively

10x Genomics Chromium Controller

10x Genomics

Pros

- High-throughput
- Indexing at three levels: sample, nucleus/cell, transcript
- Performs equally well on cells and nuclei
- Theoretically cell type agnostic

Cons

- Expensive/fixed costs
- Splicing not addressed (mostly)
- Possibly not cell type agnostic?

10x Genomics in Human Brain

- Five studies using 10x in postmortem human brain samples
 - Alzheimer's (Mathys et al, 2019)
 - Autism (Velmeshev et al, 2019)
 - MS (Schirmer et al, 2019)
 - *MDD* (Nagy et al, 2020)
 - Huntington's (Al-Dalahmah et al, 2020)
- Successfully distinguished cell populations using snRNAseq data

Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons

Corina Nagy^{1,9}, Malosree Maitra^{1,9}, Arnaud Tanti¹, Matthew Suderman², Jean-Francois Théroux¹,

Article | Published: 17 July 2019

Neuronal vulnerability and multilineage diversity in multiple sclerosis

Lucas Schirmer, Dmitry Velmeshev, Staffan Holmqvist, Max Kaufmann, Sebastian

REPORT

Single-cell genomics identifies cell type-specific molecular changes in autism

😰 Dmitry Velmeshev^{1,2,*}. 💿 Lucas Schirmer^{1,3,4}. Diane Jung^{1,2}. 💿 Maximilian Haeussler⁵. Yonatan Perez^{1,2}. 😰 Si

Single-cell transcriptomic analysis of Alzheimer's disease

Hansruedi Mathys^{1,2,10}, Jose Davila–Velderrain^{3,4,10}, Zhuyu Peng^{1,2}, Fan Gao^{1,2}, Shahin Mohammadi^{3,4}, Jennie Z. Young^{1,2}, Madhvi Menon^{4,5,6}, Liang He^{3,4}, Fatema Abdurrob^{1,2}, Xueqiao Jiang^{1,2}, Anthony J. Martorell^{1,2}, Richard M. Ransohoff⁷, Brian P. Hafler^{4,5,6,8}, David A. Bennett⁹, Manolis Kellis^{3,4,11}* & Li–Huei Tsai^{1,2,4,11}*

Experimental Design

- 32 postmortem dIPFC (BA9)
 - 16 cases (14M/2F)
 - 16 controls (14M/2F)
 - European ancestry
- Nuclei isolated using a modified version of previous protocol (Nagy et al 2020)
 - Homogenization, 2x wash and filter, resuspend ~1,000 nuclei/µl
- 10x library production and sequencing
 - CHOP Center for Applied Genomics
- Sequencing on NovaSeq 6000

Quality Control and Clustering

- Deconvolution and alignment with 10x CellRanger
- QC using Seurat package
 - Genes <3 nuclei, nuclei <200 genes, nuclei with high or low UMI
 - Normalize to 10,000 counts/nucleus
- Clustering
 - First 50 PCs calculated from 2215 "highly variable genes"
 - Low resolution first run, remove additional low UMI clusters and two SZ samples
 - High resolution second run, remove clusters specific to only a few individuals
- Final results: ~323,821 nuclei in 27 clusters
 - Previous 4 papers: ~313k total

Cell Type Proportions

Sub-populations

Sub-populations

- Our single nuclei transcriptomic data differentiates known sub-populations
 - Multiple interneuron types
 - Layer markers
- How many clusters is the correct number?
 - Sample size
 - Number of nuclei
 - Sequencing depth

Expression Data in snRNAseq

- Single cell/nuclei RNAseq data forms a bimodal distribution for each gene
 - Genes will not be detected in all cells or nuclei
 - Large number of zeroes
- What is the best way to handle this in a statistical model?

Analyzing snRNAseq: The Wild West

- There is no consensus yet on the best methods for analyzing snRNAseq data
 - Mathys LMM/Wilcoxon
 - Velmeshev/Schirmer MAST
 - Nagy LMM
- The methods for those manuscripts in the field also include different:
 - Covariates
 - FDR 0.05 vs 0.1
 - logFC Cutoff 0.25 vs 0.14 vs none

Analyzing snRNAseq: The Wild West

- Systematic analysis of statistical methods
 - Wide variation in efficacy
 - Single cell methods on average were not better than other methods
- May be specific to the data set being analyzed or the questions being asked

The MAST Hurdle Model

 Hurdle model is a combination of two different models to address the bimodal distribution of snRNAseq data

Discrete model

- Is the gene detected in a larger percentage of nuclei in cases compared to controls?
- Continuous model
 - In non-zero nuclei, is expression of the gene higher in cases compared to controls?

The MAST Hurdle Model

Continuous Model

Differential Expression Analysis

- MAST Hurdle Model
- Fixed effects
 - Case/control status, sex, age, batch
 - Gene detection rate
- Random effect
 - Subject
- Significance
 - FDR = 0.1
 - $Log_2FC \ge 0.14$ (10% difference)

Differentially Expressed Genes

- Differential genes found in 21/27 clusters
- 2,853 differentially expressed genes
 - 957 upregulated, 1896 downregulated
- 2,196 unique genes
- Top 5 clusters accounted for 95.9% of differentially expressed genes

Cell Type	# DEGs
Inhibitory Neuron #2 – PVALB+	1092
Excitatory Neuron #1 - Layer V HTR2C+	814
Excitatory Neuron #4 – Layer II/III	340
Inhibitory Neuron #5	254
Excitatory Neuron #3 – Layer IV	237
Excitatory Neuron #6 – Layer VI	53
Oligodendrocyte	18
Excitatory Neuron #9 – Layer V	7
Microglia #2	6
Excitatory Neuron #5 – Layer II/III	6
Astrocyte #4	5
Inhibitory Neuron #6 – VIP+	4
Excitatory Neuron #2 – Layer IV/V	4
Excitatory Neuron #10 – Layer VI	3
Inhibitory Neuron #4	2
Inhibitory Neuron #7	2
Inhibitory Neuron #3 – PVALB+	2
Endothelial	1
Astrocyte #3	1
Excitatory Neuron #7	1
Inhibitory Neuron #1 – SST+	1

Neurons and Schizophrenia

- Schizophrenia GWAS hits are enriched for genes expressed in mouse neurons (Skene et al, 2018)
 - Medium spiny neurons
 - Pyramidal cells in hippocampal CA1
 - Pyramidal cells in somatosensory cortex
 - Cortical interneurons
- Similar results from limited human data (Skene et al, 2018)
- PVALB+ interneurons have reduced density or altered gene expression in schizophrenia (Chung et al. 2016; Enwright et al. 2018; Fung et al. 2014; Hashimoto et al. 2008; Joshi et al. 2015; Volk et al. 2016)

Larger Clusters Do Not Have More Differentially Expressed Genes

Cell Type Specificity

Molecular Clocks and Circadian Rhythm

- Schizophrenia patients frequently report sleep abnormalities (Kaskie et al, 2017)
- Evidence for altered rhythmic expression of clock genes in schizophrenia (Johansson et al, 2016)
- Inhibitory Neuron #2 PVALB+
 - Upregulated CLOCK, CRY1, NPAS3
 - Downregulated PER2, CSNK1D
- Other Clusters
 - CLOCK, ARNTL, BHLHE41

Schizophrenia as a "Channelopathy"

- Calcium channel genes
 - <u>CACNA1C</u>, CACNA1L, CACNB1, CACNB3
- Potassium channel genes
 - KCNAB2, KCNC4, KCNJ3,
 KCNJ9, KCNK12, KCNK3,
 KCNQ5, KCNV1, KCTD2
- Sodium channel genes
 - SCN2B, SCN3B

Gene Ontology Term Enrichment

- Inhibitory Neuron #2 PVALB+
 - Ubiquitin-Dependent Protein Catabolic Process
 - Intracellular Transport
 - <u>Mitochondrion</u>
 - Spliceosomal snRNP Complex
- Excitatory Neuron #1 Layer V HTR2C+
 - ATP Synthesis Coupled Electron/Protein Transport
 - Ribonucleoprotein Complex Assembly
 - Vesicle Fusion to Plasma Membrane

Mitochondria and Schizophrenia

- NDUFV1 downregulated in five clusters
 - Previously linked to schizophrenia
- Genes encoding mitochondrial proteins
 - NDUFAB1, <u>NDUFAF5</u>, <u>NDUFAF7</u>,
 NDUFB2, NDUFB5, NDUFB7,
 NDUFB9, NDUFC1, NDUFS, NDUFS2,
 NDUFS5, NDUFS8
 - <u>UQCC1</u>, UQCC2, UQCR10, UQCRC1, <u>UQCRC2</u>, UQCRH, UQCRQ
 - COX18, COX20, COX4I1, COX5B, COX6B1, COX7B, COX7C
 - MTFR1

Ingenuity Pathway Analysis

Oxidative Phosphorylation : SZ_10x_Cluster27 : Expr Log Ratio

© 2000-2020 QIAGEN. All rights reserved.

Transcription Factor Analysis

- A number of transcription factors appear in our list of differentially expressed genes
 - Do the genes they regulate also appear?
 - Are those target genes enriched for particularly GO terms or pathways?
- Target genes identified using TF2DNA
- Enrichment analyzed using DAVID

GO Cellular Compartment: Synapse

The Missing Glia

- Gray matter from the cortex contains more glia than neurons
 - 1.48 ratio (Azevedo et al, 2009)
- snRNAseq from postmortem human brain has found the reverse
- Technical issues
 - Nuclear isolation
 - Glia have fewer UMIs than neurons

Future Directions

- Non-sequencing Validation
 - RNAscope with Dr. Lauren Stein
- Replication
 - Sample size and individual variation
- Expand Into Substance Use Disorders
 - Opioid use disorder
 - Animal models

Acknowledgements

- Benjamin Reiner
- Berrettini Lab
 - Wade Berrettini
 - Glenn Doyle
 - Andrew Weller
 - Gabriella Arauco-Shapiro
 - Emilie Davila
 - Aditya Rao

- Hayes Lab
 - Lauren Stein
 - Matthew Hayes
- Rachel Kember
- Center for Applied Genomics
- Funding
 - R01 MH109260 (Berrettini)
 - BBRF Young Investigator (Reiner)