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Schizophrenia Transcriptomics

■ Microarray and RNA sequencing 

■ Differentially expressed genes across many cortical and sub-cortical regions

– Dorsolateral prefrontal cortex (dlPFC) (Fillman et al, 2013)

– Anterior Cingulate Cortex (Zhao et al, 2015; Hong et al, 2013)

– Superior temporal gyrus (Wu et al, 2012)

– Hippocampus (Hwang et al, 2013; Kohen et al, 2014)

– Amygdala (Chang et al, 2017)

■ Enrichment of pathways and gene networks

– Neural development

– Axon guidance

– Inflammation and immune-related proteins



CommonMind Consortium

■ Largest transcriptomic analysis of schizophrenia

– 258 cases/279 controls

– RNAseq in dlPFC

■ 693 differentially expressed genes

Fromer et al, 2016



Cell Diversity in Postmortem Brain

■ Brain, like all tissues, consists of many cell types

– Major cell populations (e.g. astrocytes)

– Distinct sub-populations (e.g. PVALB+ interneurons)

■ Problems in assessing differential expression in bulk lysate

– Inability to identify which cells are affected

– Missed expression changes in less common cell types

Penney et al, 2019



Schizophrenia Single Cell Transcriptomics

■ Immunofluorescence and laser capture microdissection to collect 
individual populations of cells

■ Layer III/V pyramidal neurons (Arion et al, 2017)

– 72 PFC samples – 36 cases/36 controls

– 100 cells per layer for each sample

– Expression assessed by microarray

– 1,783 differentially expressed probe sets corresponding to 1,420 genes

■ Parvalbumin positive (PVALB+) interneurons (Enwright et al, 2018)

– Same samples and methods

– 1,044 differentially-expressed probe sets corresponding to 872 genes



Technical Hurdles with Single Cells

■ Laser capture microdissection

– Low-throughput

– Targeted

■ Pooling cells

– Lost information on variability between cells

– Collapses sub-populations

■ Frozen human brain tissue

– Freeze/thaw ruptures cell membranes making single cell methods impossible

– Single cells and nuclei have similar transcriptomes

■ Same relative levels of 98% of transcripts (Grindberg et al, 2013)



■ Single nuclei isolated from frozen human brain

– FACS sort after staining for NeuN

– One brain, multiple regions, multiple methods

■ Fluidigm C1 platform for capture and library preparation

– Microfluidics chip designed for single cell

– 96 nuclei per chip

snRNAseq in Human Brain

Fluidigm.com



snRNAseq in Human Brain

■ Different layers of excitatory neurons

■ Distinct interneuron populations

– PVALB+, SST+, etc

■ Regional differences

– e.g. Ex2 and Ex3 are layer 4 

neurons from rostral and caudal 

areas, respectively

Lake et al, 2015



10x Genomics Chromium Controller

University of Wisconsin - Madison



10x Genomics

■ Pros

– High-throughput

– Indexing at three levels: sample, nucleus/cell, transcript

– Performs equally well on cells and nuclei

– Theoretically cell type agnostic

■ Cons

– Expensive/fixed costs

– Splicing not addressed (mostly)

– Possibly not cell type agnostic?



10x Genomics in Human Brain

■ Five studies using 10x in postmortem 

human brain samples

– Alzheimer’s (Mathys et al, 2019)

– Autism (Velmeshev et al, 2019)

– MS (Schirmer et al, 2019)

– MDD (Nagy et al, 2020)

– Huntington’s (Al-Dalahmah et al, 2020)

■ Successfully distinguished cell 

populations using snRNAseq data



Experimental Design

■ 32 postmortem dlPFC (BA9)

– 16 cases (14M/2F)

– 16 controls (14M/2F)

– European ancestry

■ Nuclei isolated using a modified version of 
previous protocol (Nagy et al 2020)

– Homogenization, 2x wash and filter, 
resuspend ~1,000 nuclei/µl

■ 10x library production and sequencing

– CHOP Center for Applied Genomics

■ Sequencing on NovaSeq 6000

16 cases, 16 controls

Modified from Nagy et al., 2020



Quality Control and Clustering

■ Deconvolution and alignment with 10x CellRanger

■ QC using Seurat package

– Genes <3 nuclei, nuclei <200 genes, nuclei with 
high or low UMI

– Normalize to 10,000 counts/nucleus

■ Clustering

– First 50 PCs calculated from 2215 “highly variable 
genes”

– Low resolution first run, remove additional low UMI 
clusters and two SZ samples

– High resolution second run, remove clusters specific 
to only a few individuals

■ Final results: ~323,821 nuclei in 27 clusters 

– Previous 4 papers: ~313k total



Cell Type Proportions



Sub-populations



Sub-populations

■ Our single nuclei transcriptomic data 

differentiates known sub-populations

– Multiple interneuron types

– Layer markers

■ How many clusters is the correct number?

– Sample size

– Number of nuclei

– Sequencing depth



Expression Data in snRNAseq

■ Single cell/nuclei RNAseq data forms a 

bimodal distribution for each gene

– Genes will not be detected in all 

cells or nuclei

– Large number of zeroes

■ What is the best way to handle this in a 

statistical model?



Analyzing snRNAseq: The Wild West

■ There is no consensus yet on the best methods for analyzing snRNAseq data

– Mathys – LMM/Wilcoxon

– Velmeshev/Schirmer – MAST

– Nagy – LMM

■ The methods for those manuscripts in the field also include different:

– Covariates

– FDR – 0.05 vs 0.1

– logFC Cutoff – 0.25 vs 0.14 vs none



Analyzing snRNAseq: The Wild West

■ Systematic analysis of statistical methods

– Wide variation in efficacy

– Single cell methods on average were not 

better than other methods

■ May be specific to the data set being analyzed 

or the questions being asked

Soneson and Robinson, 2018



The MAST Hurdle Model

■ Hurdle model is a combination of two 
different models to address the 
bimodal distribution of snRNAseq data

■ Discrete model

– Is the gene detected in a larger 
percentage of nuclei in cases 
compared to controls?

■ Continuous model

– In non-zero nuclei, is expression of 
the gene higher in cases compared 
to controls?



The MAST Hurdle Model

90% 75%
4.75

5

Discrete Model Continuous Model



Differential Expression Analysis

■ MAST – Hurdle Model

■ Fixed effects

– Case/control status, sex, age, batch

– Gene detection rate

■ Random effect

– Subject

■ Significance

■ FDR = 0.1

■ Log2FC ≥ 0.14 (10% difference)

STXBP5L



Differentially Expressed Genes

■ Differential genes found in 21/27 clusters

■ 2,853 differentially expressed genes

– 957 upregulated, 1896 downregulated

■ 2,196 unique genes

■ Top 5 clusters accounted for 95.9% of 

differentially expressed genes

Cell Type # DEGs

Inhibitory Neuron #2 – PVALB+ 1092

Excitatory Neuron #1 - Layer V HTR2C+ 814

Excitatory Neuron #4 – Layer II/III 340

Inhibitory Neuron #5 254

Excitatory Neuron #3 – Layer IV 237

Excitatory Neuron #6 – Layer VI 53

Oligodendrocyte 18

Excitatory Neuron #9 – Layer V 7

Microglia #2 6

Excitatory Neuron #5 – Layer II/III 6

Astrocyte #4 5

Inhibitory Neuron #6 – VIP+ 4

Excitatory Neuron #2 – Layer IV/V 4

Excitatory Neuron #10 – Layer VI 3

Inhibitory Neuron #4 2

Inhibitory Neuron #7 2

Inhibitory Neuron #3 – PVALB+ 2

Endothelial 1

Astrocyte #3 1

Excitatory Neuron #7 1

Inhibitory Neuron #1 – SST+ 1



Neurons and Schizophrenia

■ Schizophrenia GWAS hits are enriched for genes 
expressed in mouse neurons (Skene et al, 2018)

– Medium spiny neurons

– Pyramidal cells in hippocampal CA1

– Pyramidal cells in somatosensory cortex

– Cortical interneurons

■ Similar results from limited human data (Skene et al, 2018)

■ PVALB+ interneurons have reduced density or altered 
gene expression in schizophrenia (Chung et al. 2016; Enwright et al. 

2018; Fung et al. 2014; Hashimoto et al. 2008; Joshi et al. 2015; Volk et al. 2016)

Skene et al, 2018



Larger Clusters Do Not Have More 
Differentially Expressed Genes



Cell Type Specificity



Molecular Clocks and Circadian Rhythm

■ Schizophrenia patients frequently report 
sleep abnormalities (Kaskie et al, 2017)

■ Evidence for altered rhythmic expression of 
clock genes in schizophrenia (Johansson et al, 2016)

■ Inhibitory Neuron #2 – PVALB+ 

– Upregulated - CLOCK, CRY1, NPAS3

– Downregulated - PER2, CSNK1D

■ Other Clusters

– CLOCK, ARNTL, BHLHE41

Gooley et al, 2014
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Schizophrenia as a “Channelopathy”

■ Calcium channel genes

– CACNA1C, CACNA1L, 

CACNB1, CACNB3

■ Potassium channel genes

– KCNAB2, KCNC4, KCNJ3, 

KCNJ9, KCNK12, KCNK3, 

KCNQ5, KCNV1, KCTD2

■ Sodium channel genes

– SCN2B, SCN3B 

CACNA1C

Ripke et al, 2014



Gene Ontology Term Enrichment

■ Inhibitory Neuron #2 – PVALB+ 

– Ubiquitin-Dependent Protein Catabolic Process

– Intracellular Transport

– Mitochondrion

– Spliceosomal snRNP Complex

■ Excitatory Neuron #1 - Layer V HTR2C+ 

– ATP Synthesis Coupled Electron/Protein Transport

– Ribonucleoprotein Complex Assembly

– Vesicle Fusion to Plasma Membrane

Bousman et al, 2019



Mitochondria and Schizophrenia

■ NDUFV1 downregulated in five clusters

– Previously linked to schizophrenia

■ Genes encoding mitochondrial proteins

– NDUFAB1, NDUFAF5, NDUFAF7, 
NDUFB2, NDUFB5, NDUFB7, 
NDUFB9, NDUFC1, NDUFS, NDUFS2, 
NDUFS5, NDUFS8

– UQCC1, UQCC2, UQCR10, UQCRC1, 
UQCRC2, UQCRH, UQCRQ

– COX18, COX20, COX4I1, COX5B, 
COX6B1, COX7B, COX7C

– MTFR1

Khan Academy



Ingenuity Pathway Analysis



Transcription Factor Analysis

■ A number of transcription factors appear in 

our list of differentially expressed genes

– Do the genes they regulate also appear?

– Are those target genes enriched for 

particularly GO terms or pathways?

■ Target genes identified using TF2DNA

■ Enrichment analyzed using DAVID

ZNF44

RASGRP2 PICK1 CYFIP2

CPEB1 USP14

GO Cellular Compartment: Synapse



The Missing Glia

■ Gray matter from the cortex contains 
more glia than neurons

– 1.48 ratio (Azevedo et al, 2009)

■ snRNAseq from postmortem human 
brain has found the reverse

■ Technical issues

– Nuclear isolation

– Glia have fewer UMIs than neurons

Mathys et al, 2019



Future Directions

■ Non-sequencing Validation

– RNAscope with Dr. Lauren Stein

■ Replication

– Sample size and individual variation

■ Expand Into Substance Use Disorders

– Opioid use disorder

– Animal models

ACD Bio
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