Independent Component Analysis (ICA) of MRI and PET: Unmixing addiction in the brain

Patrick D Worhunsky, PhD Assistant Professor Department of Psychiatry Yale School of Medicine

• Variance

• Variance

Days of

abstinence

Substance

users

• Variance

Across time

Time, s

- **Sources** of variance
 - Where variance comes from:
 - True noise or measurement error/imprecision (random variance)
 - Underlying, non-random factors that influence the measurement

- **Components** of variance •
 - How much variance is explained by each source:
 - It may not be the same amount for every measurement
 - The amount of variance attributed to each source

Sources of variance:

- Readiness for change
- Treatment compliance
- Social support
- Substance use history •
- Cognitive facilities

Subject

- Loadings, source loadings and component loadings
 - Source loading: how much of a component variance comes from each source
 - Component loading: how much variance that source contributes to each measurement
 - Loadings are just betas/coefficients of the variance mixture linear equation

	Readiness for change	Treatment compliance	Social support	
	+ Source Com loading loading	H Source Com Ioading Ioading	- Source Com loading loading	
S01:	.30 * .25	.50 * 1.51	<mark>.20</mark> * .95	
S02:	.30 * .90	.50 * .25	.20 * .10	

Days Abstinent

90

12

- Loadings, source loadings and component loadings •
 - Source loading: how much of a component variance comes from each source
 - Component loading: how much variance that source contributes to each measurement
 - Loadings are just betas/coefficients of the variance mixture linear equation

Subject's component variance

- Network: source network and functional networks
 - Source network: set of regions that source a single component of variance (PET)
 - Functional networks: set of regions that source a coherent component time course (fMRI)

ponent of variance (PET) ent component time course (fMRI)

- The pursuit of **Independence**
 - Blind separation of non-random variance structures
 - Find maximally non-Gaussian variance
 - Minimize mutual information across components and sources
 - Different ICA algorithms pursue independence differently
- Limitations and restrictions
 - ICA does not work on truly random data (allowance for *a* random sources depends on algorithm)
 - User decides the number of sources/components to solve for
 - Restricted to linear mixtures of component variance
 - 'True' sources cannot be known

- To review:
 - We have some variance we would like to explain. Its not random variance, we think it has some structure and represents the sum-mixture of **underlying variance sources**
 - ICA can separate out the **components of variance** and identify their sources by pursuing maximal independence.
 - ICA will output two sets of loadings: how much of the component variance was found in each source (source loading), and how much each component explains the total variance of each measurement (component loading).
 - The sum of all source*component loadings will reconstruct an estimate of the original data

• ICA of PET

- Is PET regional variance totally random or • might there be some underlying sources?
- component variance

• [¹¹C]-(+)-PHNO, dopamine D2/D3 receptors

• ICA to analyze the patterns of regional covariances across subjects to look for independent sources of

D2 and D3 receptors \bullet

- Highly expressed in subcortical and midbrain structures central to addictive processes \bullet
- Broadly implicated in impulsive and compulsive processes \bullet Berridge, 2003; Robinson et al, 2015
- **Distinct and overlapping D2/D3 distribution and circuitry**
 - Suggests unique and shared functional roles

ventral striatum

- D2 and D3 receptors in CUD
 - Lower striatal D2 availability in CUD Volkow et al, 1990; Martinez et al, 2004
 - [¹¹C]-raclopride studies
 - Equal D2/D3 affinity
 - No CUD differences in midbrain

- Higher D3 availability in CUD Payer et al, 2014 Matuskey et al, 2014
 - [¹¹C]-(+)-PHNO studies
 - 30:1 *in vivo* D3:D2 affinity
 - No CUD differences in striatum

Data from: Martinez et al, 2004 *P<0.05, **P<0.01

Regional [¹¹C]-(+)-PHNO binding reflects local D2/D3 receptor concentration ulletSearle et al, 2013; Tziortzi et al, 2011

- N=52 (26 CUD, 26 HC) \bullet
- Replicated previous ROI methods (SRTM2, cerebellum) \bullet

CUD relative to HC participants displayed lower BP_{ND} in the dorsal putamen (DPU; *P=0.037) and greater BP_{ND} in the substantia nigra (SN, **P=0.005). Error bars indicate SD.

Can ICA separate D2 and D3 binding in mixed-signal regions? •

ΗY

hypothalamus

Image processing

- Parametric images (SRTM2) were registered to MNI152 space using SPM12 and smoothed ulletwith 4mm FWHM Gaussian kernel
- Explicit masking to eliminate voxels of no-interest ullet(BP_{ND} <0.25; not expected to have structure)

ICA analysis \bullet

- MDL criteria estimated 3 independent components optimally fit the data set ulletLi et al, 2007
- Components were extracted with InfoMax using the SBM module of the GIFT lacksquareBell and Sejnowski, 1995; Calhoun et al, 2001; Xu et al, 2009

ICA of parametric imaging data

ICA input ullet

Parametric PET image

Voxel-wise vector

Unmixing matrix give us source and component loadings ullet

-		sources	
(<i>y</i> ₁	<i>y</i> ₂	Ум
 components 	<i>a</i> _{1,1}	<i>a</i> _{1,2}	<i>a</i> _{1,M}
	<i>a</i> _{2,1}	<i>a</i> _{2,2}	<i>a</i> _{2,M}
	<i>a</i> _{3,1}	<i>a</i> _{3,2}	<i>a</i> _{3,M}
	<i>a_{N,1}</i>	<i>a</i> _{N,2}	a _{N,M}

un-mixing matrix

Subject component loading

ICA of parametric imaging data

ICA post-processing \bullet

- Group source maps were scaled to estimated \widetilde{BP}_{ND} units: \bullet Source loading map * average component loading = \widetilde{BP}_{ND} contribution
 - Comparison to ROI-based D2/D3 BP_{ND} \bullet
 - \widetilde{BP}_{ND} calculated for ROIs ۲
 - Generate estimates of regional D2- and D3-related binding based on reported fractions from ۲ displacement studies

Searle et al, 2013; Tziortzi et al, 2011

• Striatopallidal source network

• Source spatial map

Striatopallidal source network \bullet

Source spatial map \bullet

ullet

Lower component loadings in CUD

HC CUD Error bars indicate SD. **P*=0.013

• Pallidonigral source network

Source spatial map

 \overline{BP}_2 2

Pallidonigral source network ullet

Source spatial map \bullet

•

Higher component loadings in CUD

HC CUD

Error bars indicate SD. *P=0.047

- **Mesoaccumens source network**
 - Source spatial map ullet

 \widetilde{BP}_3 1.5 -15 -10 +0 + > +10

- •
- ullet
- ullet

Encompassed D₃R-rich regions, but not correlated with ROI-based $D_3 R BP_{ND}$

Relatively weak source of *BP*_{ND} across ROIs

No group difference (*P*=0.11)

- Component loadings associated with years of cocaine use \bullet
- No associations with years of use with standard ROI-based BP_{ND} value ۲

D2/D3 in mixed-binding regions \bullet

- Group differences in the ventral striatum did not achieve significance \bullet
- Differences of both lower D2- and higher D3-related binding in the pallidum in CUD ullet

■HC ■CD

Standard *BP*_{ND} and ICA-estimated D2- and D3-related *BP*_{ND} in the ventral striatum and pallidum. Numbers above pairs are p-values of two-sample t-tests. Error bars are SE.

Summary \bullet

- [¹¹C]-(+)-PHNO has unique binding profile to assess both D2 and D3 receptors
- ICA blindly separated D2- and D3-related sources of BP_{ND}
- ICA estimates were more sensitive to CUD chronicity than standard binding values
- ICA estimates suggest bi-directional CUD-related alterations in D2 and D3 are present mixed-binding regions (i.e., GP)

- ICA of PET using not-mixed-binding-profile radiotracers
 - ICA of [¹¹C]-P943 (serotonin 1B)
 - Lower 5-HT-1B sources in CUD relative to HC and GD Worhunsky et al, work in process

- ICA of [¹¹C]-UCB-J (SV2A; synaptic density)
 - SV2A sources related to RSN activity in HC Fang et al, work in process

•ICA of fMRI – functional brain networks

• Distinct functions may be distributed across a distinct set regions

- function A involves the ACC and the OFC
- function B involves the ACC and the VS
- If we see lower ACC activity in addiction, impaired

understanding which other regions that activity is connected to can provide insight into which function is

ICA of fMRI

Connectivity as temporal correlation in fMRI

• e.g., seed-based connectivity

During A, ACC and VS are not connected

•fMRI BOLD signal as a summation of local neural activity

- "Do A and B simultaneously"
- BOLD in the ACC is the summation of A and B related signals

ICA of fMRI

- Challenging to isolate single discrete functions in fMRI task-design
- fMRI BOLD as a mixture of 'functional components'

X(A) X(B) + X(C) +X(D) **X(E)** ÷ ÷ Y(A) + Y(F) + Y(G) + Y(H) + Y(J)

functional components

- What is New Haven traffic related to?
 - Traffic in other Connecticut cities (connectivity)?

Yes! New Haven traffic is connected to Hartford

New Haven traffic may be connected to Greenwich

New Haven traffic is not connected to Ledyard

functional components

• What are the sources and components of traffic in Connecticut?

functional components

• Can test models (or make inferences) about types of traffic each source/component represents

functional networks

Functional network (network of function)

•No assumption of connectivity/effectivity (functional network \neq connectivity network)

- •Networks of 'types' of cars (car-functions), not cars travelling place to place
- Functional network: 'network of sources of a component function'
- •fMRI: A set of regions that source a temporal component of the BOLD mixture '
- The source of a functional brain network is a brain function

Hartford school traffic does not cause or influence New Haven school traffic, but both 'signals' are processing school-related traffic

functions of functional networks

Meta-analysis of component brain networks and associated functional domains

ICA of 8,637 peak-activation maps

Regression with study functional domains

Intrinsic Connectivity Network (ICN)

Laird, et al 2011

ICA of fMRI

ICA input ullet

BOLD timeseries

voxel * subject

source map

Back-reconstruct subject-level data •

source vector

-		sources	
(y ₁	y ₂	Ум
	<i>a</i> _{1,1}	<i>a</i> _{1,2}	a _{1,M}
onents	<i>a</i> _{2,1}	<i>a</i> _{2,2}	<i>a</i> _{2,M}
- comp	<i>a</i> _{3,1}	<i>a</i> _{3,2}	<i>a</i> _{3,M}
	<i>a_{N,1}</i>	$a_{N,2}$	$a_{N,M}$

un-mixing matrix

Time

Subject component time course

functional networks in young adult drinkers

- Response inhibition (Go/NoGo) and college drinking trajectories
- Widespread reductions in inhibitory activity related to initiating drinking.
- Lots of regions with lots of functional implications

Adol. drinking initiators; Norman et al, 2011

Worhunsky, et al 2015

• Right frontoparietal network reduced on average in binge-drinkers

• Reduced frontoparietal in committing errors predicted 1-year escalation in binge drinking

functional networks in young adult drinkers

- Response inhibition (Go/NoGo) and college drinking trajectories
 - No differences in default mode network: i.e., not related to being more/less on-task
 - No difference in temporo-occipito-parietal network: i.e., not related to stimulus discrimination processing

Worhunsky, et al 2015

• ICA of fMRI allows an investigation of the component functions of complex (or simple) tasks

functional networks in addiction

• Executive control alterations in substance use disorders

Goldstein, et al 2011

functional networks of executive control in cocaine use disorder

• 3-stage addiction model

- Blunted 'top-down' control in CUD looks like:
 - Lower cortical control networks:
 - Frontoparietal, medial frontal, salience
 - Lower default-mode suppression
 - Blunted global functioning
- Greater 'bottom-up' reactivity looks like:
 - Higher subcortical network

fMRI of executive control

• Event-related Stroop fMRI task

- Color-word Stroop
- 1.3s stim, 350ms ISI
- Pseudo-random (9-13:1 C:I)
- 6, 3-min runs
- 'Silent' performance in-scanner
- fMRI data spatially processed in SPM12
- ICA performed with Group ICA Toolbox (GIFT)
 - Components extracted using InfoMax
 - Spectral analysis to identify and exclude artifact/noise sources (LF:HF>4.0)
 - Temporal regression to select incongruent-related networks

Stroop-related brain activity

• Stroop interference-related brain activity in treatment-seeking CUD (N=20) and HC (N=20)

• Standard GLM-based analyses

- No regional differences in Stroop activity between CUD and HC
- No difference in performance measures (reaction times, error rates)

Brewer, et al 2008

Stroop-related functional networks

• Functional networks of Stroop performance

- No group difference in any executive-control-related network
- No group difference in striatal network engagement

Stroop-related functional networks

Differential relationship between functional networks and behavior

- In HC, greater engagement (B, C, D) associated with *faster* interference processing
- In CUD, greater engagement (C, D) associated with *slower* interference processing
- In CUD, greater activity is more reactive/interruptive, in HCs activity is resolution-based?

Worhunsky, et al 2013

Stroop-related functional networks

- Stroop control by treatment response
 - GLM: Right dorsal striatum predicts abstinence during treatment
 - Which functional process is this related to?

- Dorsal striatum integrated into several networks
- Responders (N=11; >80% abstinence) vs non-responders (N=9; <30% abstinence)
- Treatment-responders showed *greater* subcortical engagement than non-responders
- No striatal engagement in non-responders
- Counter to hypotheses of hyperactive subcortical functioning being disruptive to executive functions in CUD

Functional networks in CUD

Executive control in CUD

- Bottom-up 'alert' mechanism may be disrupted in CUD?
- Greater alert signals in CUD slowed conflict responding (perhaps avoiding errors)
- Healthy-levels of alert signaling associated with better treatment outcome

• Dynamic Causal Modelling (DCM) of network interactions

- Input-state-output modeling of neural propagation
- How do components X, Y, Z effect each other (and does stimulus S influence effectivity)?

Intrinsic (baseline) effectivity

• Extrinsic (context-modulated) effectivity

• How do network dynamics change in response to Stroop conflict?

•Non-treatment seeking CUD (N=16) and HC (N=16)

- Extracted more ICA sources, separation of frontoparietal and bilateral IFG networks
- •No group differences (Ns=16) in Stroop-related network engagement

Error bars are SE; all pairwise n.s. (LFP: *P*=0.10)

Network effective connectivity of Stroop control

- Subcortical activates lateral prefrontal, which activates right frontoparietal
- Right frontoparietal distributes inhibitory signals

Network effective connectivity of Stroop control

- Subcortical activates lateral prefrontal, which activates right frontoparietal
- Right frontoparietal distributes inhibitory signals

• Subcortical activates both frontoparietals, lateral prefrontal goes left • Re-organized inhibitory signals

functional component dynamics in CUD

Functional source dynamics of Stroop control

DMN suppression in CUD

- **Default mode network (DMN) suppression** lacksquare
 - DMN is a core resting-state functional network ulletBuckner et al, 2008
 - During task performance DMN is suppressed (more negative) ۲
 - Degree of suppression may be a marker of global executive ulletfunctioning

Anticevic et al, 2012; Binder, 2012

- Stroop executive control networks reliably-tended to be lower CUD than HC. \bullet
- Perhaps DMN suppression might capture this difference in global functioning \bullet
- Explore relationships with D2- and D3-related binding from [¹¹C]-(+)-PHNO scans ۲

DMN, D2/D3, and Stoop outcomes

• D2/D3 availability

- CUD had greater D3-related binding in the SN (Ns=16) p=0.04
- D2-related binding in the DPU tended to be lower in CUD p=0.07

• DMN suppression

- CUD tended to exhibit generally less DMN suppression p=0.09
- Group difference in response to high-conflict stimuli p=0.01

• Stroop performance

• No group differences in incongruent error rates or interference delays

DMN suppression and performance

- HC: Greater suppression associated with longer delays p<0.01
- CUD: Greater suppression tended to be associated with shorter delays p=0.10
- Both consistent with the inverse of executive control network findings
- DMN suppression not related to error rates

DMN suppression and D2/D3

• CUD: No association with DMN

p=0.40

•HC: Greater D2 associated with less suppression p=0.05

- **D3-related binding** \bullet
 - HC: No association with DMN p=0.60
 - CUD: Greater D3 associated with stronger suppression p<0.01

3

2

1

0

-1

-2

-3

-1.0

Engagement, residual β

D3-related SN, residual *BP*_{ND}

1.0

D2/D3 and performance

•	D2-related binding	S	150 -
	 HC: Greater D2 associated with shorter delays p<0.01 	dual m	100 -
		, resid	50 -
	 CUD: No association with interference delay p=0.88 	delay	0 -
		ence	-50 -
	 Error rates not associated with D2 	erfer	-100 -
		<u>1</u>	-200 -
			-1

D3-related binding ●

- HC: No association with interference delay p=0.38
- CUD: Greater D3 associated with shorter delays p=0.01
- Error rates not associated with D3

Interference delay, residual ms -100

Exploratory moderated-mediation

DMN-to-behavior through D2 ullet

- DMN engagement had a significant indirect effect through D2 mechanisms on interference delays only in HC
- Differed from no indirect effect in CUD index=28.57, SE=16.53; 95%CI=6.75, 71.81
- D2-mechanisms facilitate faster conflict resolution with *less* DMN suppression in HC

DMN–to–behavior through D3 •

• DMN engagement had a significant indirect effect through D3 mechanisms on interference delays only in CUD • Differed from no indirect effect in HC index=43.10, SE=16.84; 95%CI=11.05, 77.03 • D3-mechanisms facilitate faster conflict resolution in CUD but with more DMN suppression.

Un-mixing addiction in the brain

Addiction is a complex and multifaceted disease

- Substantial variability in individual disease profiles, motivations, functional impairments, etc.
- An improved understanding of the many different sources of variability will inform interventions

•Re-thinking the 're-wired' addicted brain

- How components of information are distributed across circuits may have changed (e.g., school buses are taking people to the casinos)
- How information flows from circuit to circuit may have changed (e.g., people are dropping kids off at school on their way home from work)

Understanding sources of addiction toward prevention and treatment

- Are there 'at-risk' source profiles (which sources are dominate in youth who develop a SUD)?
- How do source dynamics change during early abstinence toward sustained recovery?
- Understanding sources of addictive function may more directly translate to clinical application

Un-mixing addiction in the brain with ICA

Not all variance is created randomly

- Underlying sources of variance suggest imperfect or imprecise measurements
- Total scores can be helpful, subscales provide greater precision of underlying sources

•The most variance explained is not always best

- Analyses fitting the dominate variance distributions (e.g., PCA) may still be mixing true sources
- Mixed-source profiles can be help explain most of the variance in a dataset, understanding how underlying sources mix leverages all the variance in a dataset
- Many independent small effect sizes can contain a lot of information that adds up to big effects

• Data-driven and blind does not mean hypothesis-free

- ICA is best applied with a rationale for the expectation of types of variance sources
- Sources require replication, validation and support for interpretation

NIH National Institute on Drug Abuse Advancing Addiction Science

This research was funded by the National Institute on Drug Abuse (NIDA) (K01-DA042998, K12-DA00167, P20-DA027844, R03-DA027456, R01-DA020908, P50-DA09241), with additional support from the National Institute of Health (NIH) (P20-GM103472, R01-EB005846) and the National Center for Advancing Translational Science (NCATS) (UL1-TR000142).

acknowledgements

Robert Malison Richard Carson Marc Potenza Vince Calhoun

Gustavo Angarita David Matuskey JD Gallezot Edward Gaiser Sarah W Yip Jessica Costeines Ben Kazer

> Yale IICD Yale CNRU Yale MRRC Yale PET Center