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A (brief) history of psychiatric genetics

• Definition: The study of the role of genetics in psychiatric 
conditions

• Linkage studies

• Candidate gene studies

• Single variant association studies with ‘small’ numbers of 
cases/controls

• Endophenotypes

• Gene x Environment interactions

• Small number of associations found

• Variants not consistently replicated



Recent developments - GWAS

• First GWAS (2005) followed 
on from the first full human 
genome sequence (2003)

• Measures multiple common 
genetic variants and tests 
each against the phenotype 
(hypothesis-free)

• Is this variant more or less 
common in cases compared 
to controls?

Cases

Controls

GWAS



Recent developments – large consortia
• Consortia such as the Psychiatric Genomics Consortium have been 

formed to pool samples from smaller studies

• Larger sample sizes have yielded a greater number of significant 
results

• Increasing numbers of genetic variants now replicated across studies



Co-morbidities of psychiatric and substance use 
disorders

Psychiatric

Anxiety disorders

Alcohol and substance use

Attention deficit/hyperactivity 

disorders

Post traumatic stress disorder

Personality disorder

Eating disorder

Medical

Asthma

Cardiovascular

Hyperlipidemia 

Type 2 diabetes

Epilepsy

Thyroid disease

Migraine

Obesity



Pleiotropy

• Variants that affect multiple, unrelated, phenotypes

• Phenome-wide association analysis

Horizontal Vertical



Solution – large sample sizes, multiple phenotypes
(and compromise…….)



BioBanks and Electronic health records

• Commercial and academic BioBanks consisting of hundreds of 
thousands of samples 

Penn Medicine BioBank

Million Veteran Program

UK BioBank



Data used for genetic studies

• Aim: to establish a set of cases and controls for genetic analysis

• Two main methods I will discuss:

• Use of Phecodes for Phenome-wide association studies

• Development of EHR derived phenotypes using “domain knowledge”



Phenotypes – International Classification of 
Diseases (ICD) codes
• Each disease has an ICD code

• Currently ICD9 or ICD10

• Assigned by a physician when evaluating patient
• In the USA, often used for charging purposes (which can lead to issues)

• “Lifetime Diagnosis”

• Autism: ICD9 - 299.0, ICD10 – F84.0

• Major Depression: ICD9 - 296.3, ICD10 – F33.1

• Cardiovascular disease: ICD9 - 429.2, ICD10 – I51.9



Phenome-wide association studies

PheWAS

Cases

Controls

GWAS



Phenotypes: PheCode Mapping
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Phenotypes: PheCode Mapping

Denny et al., Nature Biotechnology, 2013



Adapted from Bush et al., 2016

Phenome-wide association studies



EHR derived phenotypes

• Use of “domain knowledge” 
• (i.e. a physician who understands the disease or trait phenotype)

• Uses defined groups of ICD codes, possibly with the addition of other 
EHR data

• Example:
• 2 ICD-9 or ICD-10 codes for bipolar disorder on separate days as outpatient

• 1 ICD-9 or ICD-10 code for bipolar disorder as inpatient

• Plus: Medication prescribed for bipolar disorder



Genetic liability for Opioid Use Disorder



OUD GWAS

• GWAS of opioid use 
disorder in MVP, Yale-Penn 
and SAGE studies

• 10,544 OUD cases and 
72,163 opioid-exposed 
controls

• Single SNP reached 
genome-wide significance

• OR=1.07

Zhou et al., https://doi.org/10.1101/19007039



Polygenic Risk Scores

• Not all of the heritability is explained by the significant GWAS SNP

• SNPs that are non-significant contain real signal
• Why are they not significant?

• Very small effect sizes, stringent multiple-testing correction

• What if we want to predict the phenotype in a different sample?
• Calculate polygenic risk scores!



Polygenic Risk Scores

βA=0.02

βG =-0.04

βC =-0.05

βT =0.09

AA 2x.02

GT 1x-.04

CG 1x-.05

AT 1x.09

AG 1x.02

TT 0x-.04

CC 2x-.05

AA 1x.09

PRS = 0.04 PRS = 0.01 

+

+

+ +

+

+



Penn Medicine BioBank (PMBB)

• Provides researchers with centralized access to a large number of blood 
and tissue samples with attached health information

• Facility banks blood specimens (i.e., whole blood, plasma, serum, buffy 
coat, and DNA isolated from leukocytes) and tissues (i.e.,formalin-fixed 
paraffin embedded, fresh and flash frozen)

• ~ 60,000 individuals

• Multiple ancestries



PRS methods

• Used summary statistics provided by Hang Zhou from OUD meta-
analysis (Zhou et al., https://doi.org/10.1101/19007039)

• Used clumping/thresholding with a number of p-value cut offs (9 
scores)

Choi et al., BioRxiv

Clumps SNPs into LD 
blocks (SNPs that 
‘travel together’)

Selects the most 
significant SNP from 
that LD block based 
on p-value

Thresholds: p ≤ 
0.000001, 0.00001, 
0.0001, 0.001, 0.01, 
0.05, 0.1, 0.5, 1



Determining the best PRS

• To determine best PRS, tested for association of PRS with OUD phenotype

• OUD phenotype determined by ICD9 and 10 codes (summary table from 
Zhou et al.)

• ICD9 and 10 codes restricted to subset of encounters that represent 
encounters with a physician

• In 52,354 PMBB individuals, 566 have at least 1 code for OUD

• In 10,182 EUR individuals with genetic data, 85 have at least 1 code for 
OUD (64 males, 21 females, mean age=62.2)

• Logistic regression model to test for association between PRS and OUD 
phenotype, with age, sex and PCs 1-10 as covariates



Determining the best PRS

PRS method Parameter OR (95% CI) P AUC

Clumping/thresholdi
ng

p<1x10-6 0.84 (0.68-1.04) 0.1178 0.69

p<1x10-5 0.99 (0.80-1.23) 0.9212 0.687

p<1x10-4 1.20 (0.96-1.48) 0.1032 0.6911

p<1x10-3 1.19 (0.95-1.47) 0.1233 0.6903

p<0.01 1.38 (1.11-1.72) 0.0032 0.708

p<0.05 1.55 (1.25-1.92) 7.49x10-5 0.7222

p<0.1 1.52 (1.22-1.89) 0.0002 0.719

p<0.5 1.51 (1.22-1.88) 0.0002 0.7149

p<1 1.50 (1.20-1.86) 0.0003 0.7143
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Case prevalence

• Split PRS into deciles

• Calculated case prevalence per decile

• Compared top 10% of PRS to rest (90%): 
OR=2.05 (1.17-3.57), p=0.012

Decile # cases Percentage

1 5 0.49

2 5 0.49

3 4 0.39

4 8 0.79

5 2 0.20

6 10 0.98

7 7 0.69

8 19 1.87

9 9 0.88

10 16 1.570.5
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Clinical relevance

• Current clinical relevance is limited

• The PRS is associated with the phenotype, but is not predictive in a 
naïve patient – we can’t use this to label individuals as ‘cases’ and 
‘controls’

• As GWAS sample sizes increase, we expect that genetic variants 
associated with disease will be identified with more accurate effect 
sizes, allowing us to create PRS that are more accurate

• Meanwhile, we can explore associations with other phenotypes to 
help us understand more about the disorder



PheWAS of PRS

  Iron deficiency anemia secondar y to blood loss (chronic)

  Bipolar

  Anxiety, phobic and dissociative disorders

  Anxiety disorder

  Substance addiction and disorders

  Tobacco use disorder

  Right bundle branch block

  Paralysis/spasm of vocal cords or larynx

  Other diseases of lung

  Spinal stenosis

  Synovitis and tenosynovitis

  Back pain

  Hormones and synthetic substitutes causing adverse effects i
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Genetic liability for Alcohol Consumption



Million Veteran Program

• Single cohort

• Large sample size (300,000 for current analysis, 600,000 for next analysis)

• Multiple ancestries

• Longitudinal repeated measures from EHR

• Alcohol consumption measure and AUD diagnosis
• Age adjusted mean Alcohol Use Disorders Identification Test-Consumption (AUDIT-C)

• AUD by ICD 9/10



PRS methods

• Summary statistics from a genome-wide association study performed 
in the UK Biobank for the alcohol use disorders identification test 
(AUDIT) were used to construct polygenic risk scores (PRS).

• PRS were created for 209,020 European ancestry individuals using the 
clumping and thresholding method.

• P-value informed clumping was performed using 1000 Genomes 
European individuals as the LD background, with an r2 = 0.1 and a 
distance threshold of 250kb.

• Risk scores were calculated for nine different p-value thresholds (p ≤ 
0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1).



AUDIT PRS

• AUDIT PRS was significantly associated with AUDIT-C (OR=1.06, 
p=4.6x10-57) and AUD (OR=1.09, p=1.4x10-44).
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AUDIT PRS – case prevalence of AUD per 
decile
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18.5% of individuals in 
the top decile of PRS 
had AUD compared to 
14.6% of individuals in 
the lowest decile of 
PRS.



AUDIT PheWAS
• Positive phenotypic associations with alcohol-related disorder, alcoholic liver 

damage, and substance addiction and disorders

• Negative phenotypic associations with calculus of kidney, urinary calculus, gout, 
hypothyroidism, and hyperglyceridemia



Conclusions

• GWAS studies have identified variants associated with substance use 
disorders

• Polygenic risk scores can explain a larger amount of phenotypic 
variation than single SNPs alone

• PRS are associated with the expected phenotypes in an independent 
sample

• PRS can identify secondary phenotypes associated with genetic 
liability for disorder

• However, clinical relevance is currently limited – not ‘prime time 
ready’ just yet



Next steps

• Larger/better GWAS (including multiple ancestries) – will allow us to 
create more powerful PRS

• Test association with intermediate phenotypes, environment
• Is genetic liability for opioid use disorder associated with variation in opioid 

neurotransmission?

• Positron emission tomography (PET) neuroimaging 

• Binding potential of the mu-opioid receptor - [11C]-carfentanil, a PET tracer

• Incorporate PRS into clinical prediction models
• May look different for different disorders
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