
Psychopharmacology (2004) 176: 369–375
DOI 10.1007/s00213-004-1890-y

ORIGINAL INVESTIGATION

Igor Elman . David Rott . Alan I. Green .
Daniel D. Langleben . Scott E. Lukas .
David S. Goldstein . Alan Breier

Effects of pharmacological doses of 2-deoxyglucose on plasma
catecholamines and glucose levels in patients with schizophrenia

Received: 19 December 2003 / Accepted: 17 March 2004 / Published online: 4 June 2004
# Springer-Verlag 2004

Abstract Rationale: Several lines of evidence suggest
that the pathophysiology of schizophrenia may be
associated with altered noradrenergic and glucoregulatory
function. Objective: The aim of this study was to
investigate these alterations during a perturbed homeo-
static state. Methods: Fifteen patients with schizophrenia
and 13 healthy individuals were given a glucose depriva-
tion challenge through administration of pharmacological
doses of 2-deoxyglucose (2DG; 40 mg/kg), and their
plasma was assayed over the next 60 min for concentra-
tions of norepinephrine (NE), the intraneuronal NE
metabolite dihydroxyphenylglycol (DHPG), epinephrine
and glucose. Results: 2DG induced significant increases

in plasma NE, epinephrine and glucose levels in both
groups with significantly greater NE and glucose incre-
ments in patients than in controls. For DHPG, 2DG
produced increases in patients and decreases in the control
subjects. NE responses correlated positively and signifi-
cantly with the DHPG and glucose responses in schizo-
phrenics, but not in controls. Conclusions: These
findings suggest that patients with schizophrenia have
exaggerated NE and glucose responses to an acute
metabolic perturbation.
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Introduction

Norepinephrine (NE) is the sympathetic neurotransmitter
that plays a critical role in maintenance of homeostasis and
rapid compensatory adjustments to physiological and
psychological challenges. Numerous studies in both
medicated (Naber et al. 1980; Sternberg et al. 1981;
Gattaz et al. 1983; van Kammen et al. 1989, 1990; Thibaut
et al. 1998; Farley et al. 1978; Crow et al. 1979) and
unmedicated (Lake et al. 1980; Kemali et al. 1982;
Sternberg et al. 1982; Glazer et al. 1987; van Kammen et
al. 1989, 1990; Breier et al. 1990) patients with schizo-
phrenia have noted elevated NE concentrations in samples
obtained from plasma, cerebrospinal fluid (CSF; Lake et
al. 1980; Naber et al. 1980; Sternberg et al. 1981; Kemali
et al. 1982; Sternberg et al. 1982; Gattaz et al. 1983;
Glazer et al. 1987; van Kammen et al. 1989, 1990; Breier
et al. 1990; Thibaut et al. 1998) and postmortem brain
(Farley et al. 1978; Crow et al. 1979; Bird et al. 1979a,b;
Bridge et al. 1985; Powchik et al. 1998).

The pathophysiological significance of these findings
remains unclear, in part because most studies of NE in
schizophrenia have tended to be done during the resting or
basal state. Given the regulatory function exerted by the
sympathetic system on homeostasis, however, an experi-
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mental paradigm examining noradrenergic activity during
a perturbed homeostatic state may uncover a dysfunction
that is unapparent during the resting condition.

One method to induce a metabolic perturbation
(accompanied by a robust activation of the sympathoneur-
al and related neuroendocrine/neurochemical systems)
involves the use of glucose-depriving (glucoprivic)
paradigms (Goldstein et al. 1992). These paradigms are
especially relevant for schizophrenia because it was
associated in prior studies with glucose metabolism
irregularities, including impaired glucose tolerance (Fin-
ney 1989; Ryan et al. 2003), insulin resistance and a high
prevalence of non-insulin-dependent diabetes mellitus
(NIDDM; Mukherjee et al. 1996; Dixon et al. 2000;
Ryan and Thakore 2002). While the basis of the
glucoregulatory abnormalities in patients with schizophre-
nia is uncertain, they may relate to the patients’ unhealthy
life style (Kendler 1986), their poor fitness (Brown et al.
1999), their use of novel antipsychotic drugs (APDs; Kato
and Goodnick 2001; Popkin and Colon 2001; Newcomer
et al. 2002) and their increased adiposity (Ryan and
Thakore 2002; Ryan et al. 2004; Banerji et al. 1997;
Goodpaster et al. 1999).

Insulin is the primary glucoprivic agent, but its use may
be confounded by only short-lived and rapidly counter-
regulated (predominately by glucagon) hypoglycemia
(Wyngaarden and Smith 1988). Additionally, insulin
may hamper the distinction of primary homeostatic
dysregulation from group differences in response to
aversive physiological and psychological factors since it
exaggerates sympathetic autonomic responses (Davis et al.
1993a,b) leading to marked anxiety and physical distress
(Goldstein 1995).

Use of pharmacological doses of a non-metabolizable
glucose analog, 2-deoxyglucose (2DG), can be an
alternative technique to perturb the sympathoregulatory
system. 2DG undergoes facilitated diffusion into cells via
glucose transporters where it is phosphorylated by hexo-
kinase to 2-deoxyglucose-6-phosphate (2DG-6-P) but is
not metabolized further down the glycolytic pathway.
When 2DG is given in pharmacological doses, the 2DG-6-
P accumulates to levels that competitively inhibit glucose-
6-phosphate dehydrogenase, resulting in transient disrup-
tion of glycolysis and interference with cellular utilization
of glucose (Horton et al. 1973).

The central nervous system is especially sensitive to the
effects glucoprivation due to its critical dependence on
glucose for metabolic activity. For that reason, 2DG acts at
the hypothalamus and other central sites to generate
compensatory responses including sympathetic activation
and hyperglycemia (Smythe et al. 1984; Storlien et al.
1985; Matsunaga et al. 1989; Smythe et al. 1989; Pascoe
et al. 1989; Smythe and Edwards 1992; Gotoh et al. 2001;
Niijima 1975; Gagner et al. 1985;Yoshimatsu et al. 1987;
Takahashi et al. 1994, 1996). In addition, peripheral
glucoreceptors in the portal vein (Hevener et al. 1997,
2000) may directly trigger NE release and produce a
further rise in plasma glucose concentration by mobilizing
liver glycogen stores (Brodows et al. 1975). Thus, 2DG

results in a protracted (Niijima 1975; Gagner et al. 1985;
Yoshimatsu et al. 1987; Gotoh et al. 2001; Takahashi et al.
1994, 1996) clinical state similar to hypoglycemia, even
though it elevates plasma glucose levels (Breier 1989).
Notwithstanding the above-mentioned neuroendocrine and
metabolic effects, unlike insulin, 2DG evokes only mild
subjective responses (i.e., hunger) and is well tolerated by
patients with schizophrenia (Breier 1989)—a feature
adding to more conclusive interpretation of findings.

In the present study, we compared the effects of 2DG
administration on plasma levels of NE and glucose in
patients with schizophrenia and healthy controls. To
examine NE turnover in sympathetic nerves, we assayed
the levels of the intraneuronal NE metabolite, dihydrox-
yphenylglycol (DHPG; Eisenhofer et al. 1992). In addi-
tion, epinephrine levels were measured to characterize the
activity of the adrenomedullary system, a purported source
of plasma NE during the 2DG-induced glucopenia in
healthy subjects (Goldstein et al. 1992). Finally, given
NE’s potential role in glucoregulation (Skyler 2000), the
relationship between plasma NE and glucose levels was
also examined.

Methods

Subjects

Fifteen patients with schizophrenia and 13 healthy control
subjects participated in this study after giving written
informed consent to a National Institute of Health (NIH)
Institutional Review Board-approved protocol. Diagnoses
were determined by a diagnostic conference utilizing data
from the Structured Clinical Interview for DSM-III-R
(SCID), a clinical interview by a research psychiatrist, past
psychiatric and medical records, and informants’ inter-
views.

All patients were stable outpatients with a chronic
course of illness [mean age at appearance of DSM-IV
criterion A symptoms of schizophrenia±standard deviation
(SD)=21.4±3.8 years; mean duration of the illness=15.3
±9.0 years] and were tested during treatment with a stable
dose of a typical APD for a minimum of 2 weeks (except
one patient, who was treated for 8 days and two patients
who entered the study APD free). NE and glucose data
from the minimally treated and the drug-free subjects were
within one SD from the rest of the schizophrenic
participants. Drug and dose (chlorpromazine equivalent
mean=748.5±501.3 mg/day, range 333–2000 mg/day)
were varied to achieve a stable clinical condition. The
baseline Brief Psychiatric Rating Scale (Overall and
Gorham 1962) total symptom score (24-item scale; items
rated 1–7) on the study day was 33±4.7, which is
indicative of low to moderate symptom levels.

Healthy control subjects were recruited through the NIH
normal volunteer program and had no psychiatric history
as determined by SCID. All subjects had no history of
illegal drugs/alcohol abuse or dependence, head trauma
resulting in loss of consciousness or any major medical
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illness or endocrinopathy. Their good physical health was
ascertained by physical examination, electrocardiogram
(EKG), screening blood work-up and urinalysis. There
were no significant differences between schizophrenic and
control subjects, respectively, for age (37.0±9.4 years
versus 33.2±6.6 years; t=1.2; df=26; P=0.24), gender
(male/female, 11/4 versus 11/2; χ2=0.53; df=1; P=0.47)
and body weight (79.0±14.3 kg versus 80±17.7 kg;
t=0.15; df=26; P=0.88).

Clinical protocol

The study reported here was part of a protocol involving
positron emission tomography (PET), and the neuroima-
ging results are reported elsewhere (Elman et al. 1999b).
Although arterial blood sampling was primarily employed
for quantification of the PET data, this sampling source,
compared with venous blood, provides a better reflection
of total body sympathetic nervous activity and glucose
metabolism, since arm tissues may remove a substantial
proportion of plasma NE and glucose (Folkow et al. 1983;
Chang et al. 1986; Riggs et al. 1984).

On the morning of the procedure, the subjects were
admitted to the 4E Unit of the Clinical Center, NIH, after
having fasted and refrained from alcohol, tobacco,
caffeine, or strenuous physical activity for at least 10 h.
While in the supine position, an arterial catheter was
inserted percutaneously after local anesthesia was given to
the overlying skin. An intravenous catheter was placed
into the antecubital fossa of the contralateral arm and was
kept patent with a slow isotonic (0.9% w/v) saline drip.
After a 90-min rest period, 2DG (40 mg/kg, maximal dose
4 g) in 50 ml isotonic saline solution was administered as
an intravenous bolus. Continuous cardiac monitoring was
performed throughout the course of the study. Self-ratings
of sensation of hunger, thirst and distress were collected at
baseline (before 2DG administration) and at the end of the
study with a self-report visual analog rating scale, scored
in millimeters (from the left side of a 100-mm line to a
perpendicular mark made by the subjects at the point
corresponding to their subjective impression). The scale
items ranged from 0 mm (not at all) to 100 mm
(extremely) with a “moderately” mark placed at 50 mm.

Biochemical variables

Arterial blood samples were collected in heparinized tubes
at 30 min before (−30), immediately prior to bolus (0) and
at +20, +40 and +60 min following the bolus and were
placed on wet ice. After separation by refrigerated
centrifugation at 4°C, the plasma was stored at −80°C.
Plasma NE (the intraassay and interassay coefficients of
variation were 6.5% and 1.9%, respectively), DHPG (the
intraassay and interassay coefficients of variation were
8.4% and 3.7%, respectively) and epinephrine (the
intraassay and interassay coefficients of variation were
3.0% and 11.4%, respectively) levels were assayed using

liquid chromatography with electrochemical detection
(Eisenhofer et al. 1986). Photometric assay with hexoki-
nase (Tietz 1995) was used to measure plasma glucose (the
intraassay and interassay coefficients of variation were
1.0% and 1.7%, respectively).

Statistical analyses

Data were analyzed using the statistical package Statistica
(StatSoft, Inc., Tulsa, OK). NE, DHPG, epinephrine and
glucose plasma concentrations at −30 min and 0 time
points were averaged to constitute a single baseline value.
To determine effects of glucoprivation on neurochemical,
behavioral (self-ratings) and physiological (heart rate,
blood pressure) variables, a one-way analysis of variance
(ANOVA) with a repeated-measures design was con-
ducted. Diagnosis (schizophrenia and healthy controls)
was the grouping factor, and time (baseline, 20, 40 and
60 min) was the within-subjects factor. The non-paramet-
ric Spearman correlation coefficient was used for corre-
lation analyses. Group data were summarized as mean
±SD. All analyses were two-tailed and a P value <0.05
defined statistical significance.

Results

There were no significant baseline differences between
schizophrenic and control subjects in plasma NE (216.4
±129.9 pg/ml versus 220.5±157.4 pg/ml; t=0.08; df=26;
P=0.94) and glucose (98.5±11.2 mg/dl versus 95.4
±9.1 mg/dl; t=0.8; df=26; P=0.43) levels. Throughout
the 60 min following 2DG administration, both groups
demonstrated robust increases (i.e., time effect) in plasma
NE (F=20.97; df=3, 26; P<0.001) and glucose (F=68.5;
df=3, 26; P<0.001) levels (Figs. 1, 2). Patients demon-
strated significantly higher (group by time interaction)
2DG-induced NE (F=2.82; df=3, 26; P=0.04) and glucose
(F=4.82; df=3, 26; P=0.004) levels, yielding mean change
from the baseline of 309.6±257.1 pg/ml versus 124.2
±223.7 pg/ml (t=2.0; df=26; P=0.05) for NE and 69.5
±27.6 mg/dl versus 40.7±36.4 mg/dl (t=2.4; df=26;
P=0.026) for glucose.

Table 1 displays the DHPG and epinephrine data. For
DHPG, 2DG produced two different response profiles:
increases in patients and decreases in the comparison
subjects (respective mean change from the baseline: 107.8
±257.1 pg/ml versus −89.3±223.7 pg/ml; t=2.24; df=26;
P=0.03), resulting in a non-significant time effect (F=1.58;
df=3, 26; P=0.20) and a significant group by time
interaction (F=3.56; df=3, 26; P=0.018). Epinephrine
data analyses revealed significant time effect (F=25.15;
df=3, 26; P<0.001) and no group by time interaction
(F=0.22; df=3, 26; P=0.88).

Patients, in comparison with controls, had significantly
lower baseline hunger ratings (2.7±3.0 mm versus 5.1
±2.1 mm; t=2.4; df=26; P=0.02), and other baseline data
were not different between the groups. In all participants,
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2DG produced significant increases (time effect) in self-
ratings of hunger (F=45.14; df=1,26; P<0.001), distress
(F=7.59; df=1, 26; P=0.01) and thirst (F=23.53; df=1,26;
P<0.001). The increases in the ratings for hunger (F=5.13;
df=1, 26; P=0.03; mean change from the baseline: 5.7
±3.0 mm versus 2.8±2.9 mm; t=2.6; df=26; P=0.016), but
not thirst (F=0.0; df=1,26, 26; P=1.0) or distress (F=0.42;
df=1,26, 26; P=0.52), were greater (group by time
interaction) in the patient group.

Overall, no group differences or group by time
interactions were observed in the hemodynamic responses
to 2DG (data not shown). However, diastolic blood
pressure did decrease over time, producing a compensa-
tory (Goldstein et al. 1992) increase in heart rate and
resulting in a significant time effect for these two variables
(F=19.73; df=3,26; P<0.01 and F=8.58; df=3,26; P<0.01).

Plasma NE and DHPG levels in patients with schizo-
phrenia correlated significantly at the baseline (rs=0.73;
df=13; P=0.002) and at 20 min (rs=0.67; df=13; P=0.008),
40 min (rs=0.80; df=13; P<0.001) and 60 min (rs=0.85;
df=13; P<0.001). In controls, NE and DHPG levels
significantly correlated at the baseline (rs=0.54; df=11;
P=0.05), but not at any other time point (P>0.27). In
patients with schizophrenia, plasma NE levels correlated
with those of glucose at 20-min (rs=0.62; df=13; P=0.01),
40-min (rs=0.63; df=13; P=0.01) and 60-min (rs=0.69;
df=13; P=0.004) time points, but not at the baseline
(rs=0.36; df=13; P=0.19). No NE–glucose relationships
were observed in healthy controls at any of the time points
(P>0.25).

Discussion

To our knowledge, this is the first study to integrate
noradrenergic and glucoregulatory data in patients with
schizophrenia. The major finding of this study was that
patients with schizophrenia had significantly greater 2DG-
induced plasma NE and glucose levels than healthy
control subjects. Although neuroglucopenia induced by
administration of 2DG (which in this study uncovered a
NE-related glucoregulatory dysfunction) is not itself a
physiological phenomenon, we believe that our results
may have physiological significance in patients with
schizophrenia because neuroglucopenia normally induced
by insulin has physiological effects similar to those
produced by 2DG.

The NE data are consistent with prior reports of
sympathetic abnormalities in schizophrenia (Stein and
Wise 1971; Lake et al. 1980; Naber et al. 1980; Glazer et
al. 1987; Bird et al. 1979a), including amplified NE
response to various challenges, i.e., cold pressor, noise and
mental arithmetic (Albus et al. 1982). Simultaneous

Fig. 1 The effects of pharmacological doses of 2-deoxyglucose on
plasma norepinephrine levels in patients with schizophrenia and in
healthy control subjects. Significant effect of time (F=20.97; df=3,
26; P<0.001) and group by time interaction (F=2.82; df=3, 26;
P=0.04)

Fig. 2 The effects of pharmacological doses of 2-deoxyglucose on
plasma glucose levels in patients with schizophrenia and in healthy
control subjects. Significant effect of time (F=68.5; df=3, 26;
P<0.001) and group by time interaction (F=4.82; df=3, 26;
P=0.004)

Table 1 Effects of 2-deoxyglucose on plasma DHPG and epineph-
rine concentrations in patients with schizophrenia (N=15) and in
healthy controls (N=13)

Time (min) Catecholamine (pg/ml) Patients Controls

Baseline DHPG 701.6 (46.3) 731.4 (119.4)
Epinephrine 120.1 (47.3) 133.0 (53.9)

20 DHPG 744.6 (54.0) 731.7 (113.4)
Epinephrine 1044.7 (161.7) 1225.4 (377.4)

40 DHPG 785.1 (61.5) 779.9 (118.6)
Epinephrine 1153.2 (199.7) 1408.5 (449.7)

60 DHPG 809.4 (56.8) 642.1 (76.5)
Epinephrine 1114.4 (157.4) 1259.8 (396.6)
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measurements of NE, epinephrine and DHPG plasma
levels employed in this study provided an opportunity to
explore potential group differences in the mechanisms
responsible for 2DG-induced plasma NE elevations.
Plasma levels of any endogenous biochemical represent
the ratio of the rate of release of the substance into the
bloodstream (spillover) and clearance of the substance
from the bloodstream. Assuming that plasma clearance of
NE was not decreased during the 2DG glucoprivation, the
increments of NE must have been secondary to an increase
in spillover, which is determined by the rate of release
from the sympathetic nerves, the adrenal medulla or a
combination of both.

Studies of 2DG in healthy volunteers have attributed the
2DG-induced NE elevations mainly to the adrenomedul-
lary rather than sympathoneural secretion since these NE
elevations were associated with no concurrent increases in
DHPG (actually, significant decreases were reported;
Breier 1989; Goldstein et al. 1992; Breier et al. 1992).
This is because sympathoneural (but not adrenomedullary)
stimulation concurrently increases plasma NE and DHPG
levels due to increased reuptake of the released NE
(Goldstein 1995).

In the present study, plasma NE responses did and
plasma epinephrine responses did not differentiate the
schizophrenic and control groups. However, DHPG levels
increased in the patients and decreased in controls, and
there was a positive relationship between NE and DHPG
concentrations across schizophrenics; whereas, there was
none for the controls. These findings fit with the notion
that, among schizophrenic patients, high NE levels
resulted from increased sympathoneural release (and
reuptake) of NE. In contrast, lower NE responses in
controls, decreases in DHPG and the lack of relationship
between NE and DHPG levels could be explained by
mainly adrenomedullary secretion of NE (Goldstein et al.
1992).

It is of interest that glucose effects were in the same
direction as those for NE, i.e., patients with schizophrenia
had significantly greater 2DG-induced plasma levels of
glucose. While it is tempting to suggest that the observed
group differences reflect the impact of schizophrenia
neuropathology on the neurocircuitry modulating plasma
glucose concentrations (Mukherjee et al. 1996; Ryan et al.
2003), other explanations are also possible.

One potential cause may be that schizophrenia subjects
are less physically fit (Brown et al. 1999) or have grater
abdominal/intramuscular adiposity (Ryan and Thakore
2002). Both conditions are predictably associated with
more insulin resistance leading to higher stimulated
plasma glucose and insulin levels (Stear 2003). Higher
plasma insulin, in turn, will potentially increase noradren-
ergic activity resulting in higher NE levels (Baron et al.
1994) and could be the basis of the significant correlation
between NE and glucose concentrations in the schizo-
phrenia group.

However, the significant NE–glucose relationship raises
a possibility that NE elevations produced by some atypical
APDs (e.g., clozapine; Elman et al. 1999a) or by

environmental stress may eventually lead by their chronic
nature to impaired glucose tolerance. This link is also
apparent in other syndromes associated with NE excess,
e.g., pheochromocytoma (Skyler 2000) and may involve
several peripheral NE’s effects including: (1) enhancement
of hepatic glucose output (Brodows et al. 1975; Smythe et
al. 1989); (2) interference with the normal feedback
control exerted by circulating glucose on pancreatic islets
secreting insulin and glucagon (Havel et al. 1988); (3)
diminution of insulin receptors’ sensitivity (Walters et al.
1997); (4) suppressive action on insulin secretion
(Matsunaga et al. 1989); and (5) reduction of glucose
uptake by skeletal muscles due to NE-induced vasocon-
striction (Esler et al. 2001).

Glucose responses in the patients’ group may have been
influenced also by the use of typical APDs. Indeed, some
(Ryan and Thakore 2002; Lindenmayer et al. 2003), but
not all (Mukherjee et al. 1989), reports suggest that these
agents may contribute to glucose intolerance. Note,
however, that it is unlikely that APDs enhanced NE
responses to 2DG; if anything, they tend to have a
dampening effect on noradrenergic activity (Egan and
Hyde 2000). Nonetheless, assessment of the glucoregula-
tory and noradrenergic systems using 2DG and other
metabolic challenge paradigms in APD-free schizophrenic
patients would be an important consideration for future
research.

A few additional caveats should be considered in
interpreting our data. First, the present design cannot rule
out that 2DG induced different degrees of central and
peripheral glucoprivation in patients and in the control
group. Several factors determine the extent of 2DG-
induced glucoprivation, other than activation of glucose
counterregulatory systems. Probably the most important is
the 2DG transport into cells. Like naturally occurring
glucose, 2DG undergoes facilitated diffusion into cells by
glucose transporters (Horton et al. 1973). The reduced
insulin sensitivity that has been proposed to exist in
patients with schizophrenia (reviewed in Dwyer et al.
2001), along with the associated reduction in the number
and/or activity of glucose transporter proteins, argue
against enhancement of intracellular 2DG transport as a
basis for exaggerated catecholamine responses in the
schizophrenia group. Less is, however, known about
possible differences in the enzymes of intracellular
phosphorylation (e.g., hexokinase, glucokinase and
others). These and other factors that were not a part of
the present study design (e.g., glucagon, growth hormone
and C-peptide along with changes in gene expression or
protein changes) may need to be assessed in future studies.
Second, this study assessed only acute 2DG responses
(i.e., approximately 50% of the NE elevation, and more
than 50% of the glucose elevation was undetermined in
this acute study), and longer study periods may have
yielded different results. Third, mostly men participated in
the experiment and results may not be easily extrapolated
to women. Fourth, the subjects’ fasting status was not
confirmed in study participants, and non-compliance with
the fasting requirement might have influenced the results.
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Lastly, these findings should be considered preliminary
pending replication with a larger sample.

In conclusion, in patients with schizophrenia, 2DG-
induced metabolic perturbation elicited heightened NE and
glucose responses. We believe that glucoprivic paradigms
may have a heuristic value for future investigation aimed
at elucidating the mechanisms underlying noradrenergic
and glucoregulatory alterations associated with schizo-
phrenia.
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